CURRENT SCENARIO OF MACHINING PROCESS IN ADVANCED Al2O3 AND Al2O3 CERAMICS COMPOSITE MATERIALS: A STUDY REVIEW

  • Parvin Pawar Ph.D. Research Scholar, Dept. of Manufacturing Engineering
  • Raj Ballav Associate Professor, Dept. of Manufacturing Engineering
  • Amaresh Kumar Associate Professor, Dept. of Manufacturing Engineering
Keywords: Al2O3, AWJ, EDM, LAM, Laser

Abstract

The recent developments in Al2O3 and Al2O3 based ceramics focused not only on the improvements of strength and toughness, but also on very difficult to machine complex shapes. The present paper reports that, in the study of contemporary literature resources available to focus on different types of machining processes used to machine Al2O3 and  Al2O3 based ceramics. Furthermore an analysis of all literature review of different types of machining process, input parameters and output parameters used by various researchers.

References

1. Patil, N. G., Brahmankar, P. K., Some studies into wire electro-discharge machining of alumina particulate-reinforced aluminum matrix Composite, International Journal of Advanced Manufacturing Technology Vol. 48, pp. 537-555, (2010).
2. Tak, H.S., Ha, C. S., Lee, H. J., Lee, H. W., Jeong, Y. K., Kang, M. C., Characteristic evaluation of Al2O3/CNTs hybrid materials for micro-electrical discharge machining, Trans. Nonferrous Met. Soc. China , Vol. 21, pp. 28-32, (2011).
3. Kok, M., Modelling the effect of surface roughness factors in the machining of 2024Al/Al2O3 particle composite based on orthogonal arrays, International Journal of Advanced Manufacturing Technology, Vol. 55, pp. 911-920, (2011).
4. Yang, J., Yu, J., Cui, Y., Huang, Y., New laser machining technology of Al2O3 ceramic with complex shape, Ceramics International, Vol. 38, pp. 3643-3648, (2012).
5. Vora, H. D., Santhanakrishnan, S., Harimkar, S. P., Boetcher, S.K.S., Dahotre, N. B., Evolution of surface topography in one-dimensional laser machining of structural alumina, Journal of the European Ceramic Society, Vol. 32, pp. 4205-4218, (2012).
6. Ji, R., Liu, Y., Zhang, Y., Wang, F., Cai, B., Fu, X., Single Discharge Machining Insulating Al2O3 Ceramic with High Instantaneous Pulse Energy in Kerosene, Materials and Manufacturing Processes, Vol. 27, pp. 676-682, (2012).
7. Roy, T., Choudhury, D., Mamat, A.B., Murphy, B.P., Fabrication and characterization of micro-dimple array on Al2O3 surfaces by using a micro-tooling, Ceramics International, Vol. 40, pp. 2381-2388, (2014).
8. Bhosale, S.B., Pawade, R.S., Brahmankar, P. K., Effect of Process Parameters on MRR, TWR and Surface Topography in Ultrasonic Machining of Alumina Zirconia Ceramic Composite, Ceramics International, pp. 1-11, (2014).
9. Calignano, F., Denti, L., Bassoli, E., Gatto, A., Iuliano, L., Studies on electrodischarge drilling of an Al2O3–TiC composite, International Journal of Advanced Manufacturing Technology, Vol. 66, pp. 1757-1768, (2013).
10. Liu, J. W., Baek, D. K., Ko, T. J., Chipping minimization in drilling ceramic materials with rotary ultrasonic machining, International Journal of Advanced Manufacturing Technology, Vol. 72, pp. 1527-1535, (2014).
11. Singh, S., Optimization of machining characteristics in electric discharge machining of 6061Al/Al2O3p/20P composite by grey relational analysis, International Journal of Advanced Manufacturing Technology, Vol. 63, pp. 1191-1202, (2012).
12. Guo, Z., Ramulu, M., Investigation of displacement fields in an abrasive water-jet drilling process: Part 1. Experimental measurements, Experimental Mechanics, Vol.41, No.4, pp. 375-387, (2001).
13. Xu, S. Wang, J., A study of abrasive water-jet cutting of alumina ceramics with controlled nozzle oscillation, International Journal of Advanced Manufacturing Technology, Vol.27, pp. 693-702, (2006).
14. Ahn, Y.C., Chung, Y.S., Numerical analysis of the electro-discharge machining process for alumina-titanium carbide composite II Unsteady state approach, Korean J. Chem. Enggi. Vol.19, No. 4, pp. 694-702, (2002).
15. Chiang, K.T., Modeling and analysis of the effects of machining parameters on the performance characteristics in the EDM process of Al2O3+TiC mixed ceramic, International Journal of Advanced Manufacturing Technology, Vol. 37, pp. 523-533, (2008).
16. Patel, K.M., Pandey, P.M., Rao, P.V., Optimisation of process parameters for multi-performance characteristics in EDM of Al2O3 ceramic composite, International Journal of Advanced Manufacturing Technology, Vol. 47, pp. 1137-1147, (2009).
17. Muttamara, A., Fukuzawa, Y., Mohri, N., Tani, T., Effect of electrode material on electrical discharge machining of alumina, Journal of materials processing technology, Vol. 209, pp. 2545-2552, ( 2009 ).
18. Liu, J.W., Yue, T.M., Guo, Z.N., Wire Electrochemical Discharge Machining of Al2O3 Particle Reinforced Aluminum Alloy 6061, Materials and Manufacturing Processes, Vol. 24, pp. 446-453, (2009).
19. Fukuzawa, Y., Mohri, N., Gotoh, H., Tani, T., Three-dimensional machining of insulating ceramics materials with electrical discharge machining, Trans. Nonferrous Met. Soc. China, Vol. 19, pp. 150-156, (2009).
20. Ferraris, E., Reynaerts, D., Lauwers, B., Micro-EDM process investigation and comparison performance of Al3O2 and ZrO2 based ceramic composite, CIRP Annals - Manufacturing Technology, Vol. 60, pp. 235-238, (2011).
21. Rebro, P.A., Shin, Y.C., Incropera, F.P., Laser-Assisted Machining of Reaction Sintered Mullite Ceramics, Journal of Manufacturing Science and Engineering, Vol. 124, pp. 875-885, (2002).
22. Kibria, G., Doloi, B., Bhattacharyya, B., Predictive model and process parameters optimization of Nd:YAG laser micro-turning of ceramics, International Journal of Advanced Manufacturing Technology, Vol. 65, pp. 213-229, (2013).
23. Peng, W.Y., Liao, Y.S., Study of electrochemical discharge machining technology for slicing non-conductive brittle materials, Journal of Materials Processing Technology, Vol. 149, pp. 363-369, (2003).
24. Manna, A., Kundal, A., An experimental investigation on fabricated TW-ECSM setup during micro slicing of nonconductive ceramic, International Journal of Advanced Manufacturing Technology, pp. 1-9, (2013).
25. Zhong, Z.W. “Ductile or Partial Ductile Mode Machining of Brittle Materials, International Journal of Advanced Manufacturing Technology, Vol. 21, pp. 579-585, (2003).
26. Emami, M., Sadeghi, M.H., Sarhan, A. A. D., Hasani, F., Investigating the Minimum Quantity Lubrication in grinding of Al2O3 engineering ceramic, Journal of Cleaner Production, Vol. 66, pp. 632-643, (2014).
27. Tsai, C.H., Chen, H.W., The laser shaping of ceramic by a fracture machining technique, International Journal of Advanced Manufacturing Technology, Vol. 23, pp. 342-349, (2004).
28. Samant, A. N., Dahotre, N. B., Differences in physical phenomena governing laser machining of structural ceramics, Ceramics International, Vol. 35 , pp. 2093-2097, (2008).
29. Yan, Y., Li, L., Sezer, K., Wang, W., Whitehead, D., Ji, L., Bao, Y., Jiang, Y., CO2 laser underwater machining of deep cavities in alumina, Journal of the European Ceramic Society, Vol. 31, pp. 2793-2807, (2011).
30. Goswami, R.N., Mitra, S., Sarkar, S., Experimental investigation on electrochemical grinding (ECG) of alumina-aluminum interpenetrating phase composite, International Journal of Advanced Manufacturing Technology, Vol. 40, pp. 729-741, (2009).
31. Wu, J., Cong, W., Williams, R.E., Pei, Z.J., Dynamic Process Modeling for Rotary Ultrasonic Machining of Alumina, Journal of Manufacturing Science and Engineering, Vol. 133, pp. 041012-1-041012-5, (2011).
32. Yue, Z., Huang, C., Zhu, H., Wang, J., Yao, P., Liu Z. W., Optimization of machining parameters in the abrasive water-jet turning of alumina ceramic based on the response surface methodology, International Journal of Advanced Manufacturing Technology, Vol. 71, pp. 2107-2114, (2014).
Published
2015-12-31
How to Cite
Pawar, P., Ballav, R., & Kumar, A. (2015). CURRENT SCENARIO OF MACHINING PROCESS IN ADVANCED Al2O3 AND Al2O3 CERAMICS COMPOSITE MATERIALS: A STUDY REVIEW. Nonconventional Technologies Review, 19(4). Retrieved from http://revtn.ro/index.php/revtn/article/view/164