SHORT CONSIDERATIONS ON THE ULTRASONIC ACTIVATION OF THE ELECTRODE USED IN THE EDM/WEDM PROCESS
Abstract
The paper presents some considerations on the ultrasonic energy overlapping mechanism over the sparks energy at EDM/WEDM processing. In this respect, the ultrasounds effect on the dielectric environment of the gap is studied. In the dielectric environment, ultrasonic energy causes homogenization, dispersion, impact with the workpiece surface and evacuation of the eroded particles, respectively the occurrence of cavitation phenomenon. Depending on frequency and the vibration amplitude of the tool- electrode as well the dielectric liquid rigidity, the erosive capacity/erosion speed, dimensional accuracy and surface quality were determined by experiment, measuring the depth of machining, tool wear, machining speed, gap size and the surface roughness.
References
2. Murray J.W., Sun J., Patil D.V., Wood T.A., Clare A.T., Physical and electrical characteristics of EDM debris, Journal of Materials Processing Technology, 229, pp. 54-60, (2016).
3. Murti V.S.R., Philip P.K., An analysis of the debris in ultrasonic-assisted electrical discharge machining, Wear 117, pp. 241-250, (1987).
4. Bai Y., Yang M., The influence of superimposed ultrasonic vibration on surface asperities deformation, Journal of Materials Processing Technology, 229, pp. 367-374, (2016).
5. Bai Y., Yang M., Investigation on mechanism of metal foil surface finishing with vibration-assisted micro-forging, Journal of Materials Processing Technology, 213 (2), pp. 330-336, (2013).
6. Bunget C., Ngaile G., Influence of ultrasonic vibration on micro-extrusion, Ultrasonics 51 (5), pp. 606-61, (2011).
7. Okada A., Uno Y., Nakazawa M., Yamauchi T., Evaluation of spark distribution and wire vibration in wire EDM by high-speed observation, CIRP Annals, 59 (1), pp. 231-234, (2010).
8. Yamada H., Mohri N., Saito N., Magara T., Modal analysis of wire electrode vibration in wire-EDM, International Journal Of Electrical Machines 19-24, (1997).
9. Inoue K., Procédé et dispositif pour le traitement par érosion électrique avec électrode filiforme vibrant, Brevet France, no 2 350 919/07.10.1979, (1979).
10. Savii Gh., Nani V.M., Militaru C., Muntean N., Method and device for ultrasonic activation wire electrode, Romanian Patent, no 102596/12.12.1988, (1988).
11. Savii Gh., Nani V.M., Militaru C., Muntean N., Contributions on Ultrasound Activation of Wire-Cut Electric Discharge Processing, ISEM 9, Nagoya, (1989).
12. Tomura S., Kunleda M., Analysis of electromagnetic force in wire-EDM, Precision Engineering, 33 (3), 255-252, (2009).
13. Okada A., Ichii S., Okamoto Y., Investigation of wire movement in fine wire EDM by high-speed observation, International Journal of Electrical Machines, 18, pp. 43-48, (2013).
14. Kimura A., Okamoto Y., Okada A., Ohya J., Yamauchi T., Fundamental Study of Multi-wire EDM Slicing of SiC by Wire Electrode with Track-shaped, Procedia CIRP 6:232-237, (2013
15. Kitamura T., Kunieda M., Clarification of EDM Gap Phenomena Using Transparent Electrodes, CIRP Annals 63 (1):213-216, (2014).
16. Wong Y., Rahman M., Lim H., Han H., Ravi N., Investigation of Micro-EDM Material Removal Characteristics Using RC-Pulse, Journal of Materials Processing Technology, 140 (1-3) pp. 303-307, (2003).
17. Snoeys R., Van Dyck F., Investigation of EDM Operations by Means of Thermo-Mathematical Models, Annals of the CIRP, 20 (1):35-36, (1971).
18. Okada A., Uno Y., Onada S., Habib S., Computational Fluid Dynamics Analysis of Working Fluid Flow and Debris Movement in Wire EDMed Kerf, Annals of the CIRP 58 (1): 2009-212, 2009).
19. Schumacher B.M., About the Role of Debris in the Gap during Electrical Discharge, Annals of the CIRP 39 (1): 197-199, (1990).
20. Cetin S., Okada A., Uno Y., Effect of Debris Accumulation on Machining Speed in EDM, International Journal of Electrical Machining, 9, pp.9-14, (2004).
21. Han F., Kunieda M., Sendai T., Imai Y., High precision simulation of WEDM using parametric programming, CIRP Annals, 51 (1), pp. 165-168, (2002).
22. Nishikawa M., Kunieda M., Prediction of wire-EDMed surface shape by in-process measurement of wire electrode behavior, Journal of Precision Engineering, 75 (9), pp. 1078-1082, (2009).
23. Okada A., Konishi T., Okamoto Y., Kurihara H., Wire breakage and deflection caused by nozzle jet flushing in wire EDM, CIRP Annals-Manufacturing Technology, 64, pp. 233-236, (2015).
24. Dauw D.F., Sthioul H., Delpretti R., Tricario C., Wire Analysis and Control for Precision EDM Cutting, Annals of the CIRP 38 (1): 191-194, (1989).
25. Rao R.V., Pawar P.J., Dawim J.P., Parameter optimization of ultrasonic machining process using nontraditional optimization algorithm, Materials and Manufacturing Processes, 25 (10), pp. 1120-1130, (2010).
26. Sarkar S., Sekh M., Mitra S., Bhattacharyya B., A novel method of determination of wire lag for enhanced profile accuracy in WEDM, Precision Engineering, 35 (2), pp. 339-347, (2011).
27. Mingqi I., Minghui I., Guangyao X., Study on the variations of form and position of the wire electrode in WEDM-HS, International Journal of Advanced. Manufacturing Technology, 25 (9-10), pp. 929-934, (2005).
28. Chen Z., Huang Z., Zhang H., Li H., Ming W., Zhang C., An analysis and optimization of the geometrical inaccuracy in WEDM rough corner cutting, International Journal of Advanced Manufacturing Technology, 74 (5-8), pp. 917-929, (2014).
29. Chen Z., Huang Y., Huang H., Zhang Z., Zhang G., Three-dimensional characteristics analysis of the wire-tool vibration considering spatial temperature field and electromagnetic field in WEDM, International Journal of Machine Tools&Manufacture, 92, pp. 85-96, (2015).
30. Colder M.I., Ozanozgu A.M., Experimental investigation of effects of cutting parameters on surface roughness in the WEDM process, International Journal of Machine Tools& Manufacture, 40 (13), pp. 1831-1848, (2000).
31. Agarval S., Rao P.V., Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SIC grinding, International Journal of Machine Tools&Manufacture, 48 (6), pp. 698-710, 2008
32. Rosenberg L.D., High-intensity ultrasonic field, Plenum Press, New-York London, (1972).
33. Chow H.M., Yang L.D., Lin C.T., Chen Y.F., The use of SiC powder in water as dielectric for micro-slit EDM machining, Journal of Materials Processing Technology, 195, pp. 160-170, 2008
34. Kazanțev V.A., Rosenberg L.D., The mechanism of ultrasonic cutting, Ultrasonics, vol. 3, SUA, (1965).
35. Nani V.M., Ultrasonic activation of the wire electrode on EDM processing machine, ISBN: 978-3-659-68755-6, LAP LAMBERT Academic Publishing, Germany, (2015).
36. Markov A.I., Ustinov I.D., A study of the ultrasonic’s diamond drilling of nonmetallic materials, Industrial Diamond Review, Marea Britanie, pp. 97 – 99, (1972).
37. Ono A., Analysis of oscillations of an ultrasonic tool by the laser beam diffraction method, CIRP Annalen, Helvetia, 25, nr. 1, pp. 349-354, (1976).
38. Mironoff N.L., Introduction to EDM study, Microtehnic Publishing, Helvetia, (1970).
39. Chivers R.C., Fluctuations of acoustic waves in non-homogeneous environments, Journal of Physics-D Applied Physics, Marea Britanie, 13, nr. 11, pp. 1997 – 2003, (1980).
40. Van Dijck P.J., Some results of physical research in EDM, ISEM 4, Bratislava, (1974).
41. Hansson I., Dynamics of the voids in the ultrasonic (vibratory) erosion by cavitation, Journal of Applied Physics, SUA, 51, nr. 9, pp. 4651-4658, (1980).
42. Constantinescu G., The theory of Sonicity, Editura Academiei RSR, second edition, Bucharest, (1985).
43. Ikeda M., The movement of a bubble in the gap depending on the single electrical discharge (first report, Journal of The Japan of Electrical Machining Engineers, 6 (11): 12-26, (1972).
44. Hayakawa S., Sasaki Y., Itoigawa F., Nakamura T., Relationship Between Occurrence of Material Re-moval and Bubble Expansion in Electrical Discharge Machining, Procedia CIRP 6:174-179, (2013).
45. Nani V.M., Complex phenomena study in dielectric fluid from gap during the W-EDM processing in ultrasonic field, International Journal of Advanced. Manufacturing Technology, 92 (1), pp. 197-215, (2017).
46. Neppiras E.A., Acoustic cavitations, Physic Reports, vol. 61, nr. 3, (1980).
47. Popoviciu O.M., Evolution of cavitation bubbles produced by sparks, Doctoral thesis, Polytechnic Institute "Traian Vuia" Timişoara, 1971).
48. Kurr R., Obaciu Gh., Werteilung der Impulsenergie bei der elektroerosiren Bearbeitung, Industrie Anzeiger, 93, no 54, 1971
49. Miţkevici M.K., Ob elektroerozionnom effekte na vibrinuişcih elektrodah, Fiziceskie osnovi elektroiskrovoi obrabotki materiallov, Editura Nauka, Moscova, (1966).
50. Jun Q., Fei Y., Jun W., Bert L., Dominiek R., Material removal mechanism in low-energy micro-EDM, CIRP Annals-Manufacturing Technology, 64, pp. 225-228, (2015).
51. Mironoff N.L., Thermal effects of erosive pulses, ISEM 5, Wolfsberg, (1977).
52. Kolesnichenko A.F., Podoltsev A.D., Kucheryavaya I.N., Action on pulse magnetic field on molten metal, ISIJ Int. 34, pp. 715-721, (1994).
Copyright (c) 2020 Viorel Mihai Nani

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.