EXPANDED GLASS BY A NONCONVENTIONAL MICROWAVE HEATING TECHNIQUE FROM RESIDUAL GLASS

  • Lucian Paunescu Cosfel Actual SRL Bucharest
  • Sorin Mircea Axinte Daily Sourcing & Research SRL Bucharest
Keywords: coal fly ash, compression resistance, expanded glass, residual glass, microwave warming, silicon carbide

Abstract

Glass-ceramic foam was produced from residual glass (87.6-87.9 %), coal fly ash (8.5-10 %), silicon carbide (2-3 %), and kaolin (0.4-0.6 %) by sintering at 950-975 ºC. The heating technique was original, being used the preponderantly direct warming procedure using electromagnetic waves. The glass-ceramic foam had the following characteristics: apparent specific gravity between 0.22-0.28 g/cm3, porousness between 86.7-89.5 %, thermal conductance in the range 0.055-0.065 W/m·K, compression resistance between 1.8-2.5 MPa, water absorption below 1.2 vol. %, and pore dimension under 1 mm. The specific electricity consumption had very low values (between 0.75-0.83 kWh/kg). The application field of the product includes thermal insulation materials for construction, architectural components and other applications that do not require resistance to high mechanical stress.

References

1. Scarinci, G., Brusatin, G., Bernardo, E., Cellular Ceramics: Structure, Manufacturing, Properties and Applications, Scheffler M., Colombo, P. (eds.), Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany, pp. 158-176, (2005).
2. Rawlings, R.D., Wu, J.P., Boccaccini, A.R., Glass-ceramics: their production from wastes. A review, Journal of Materials Science, Vol. 41, No. 3, pp. 733-761, (2006).
3. Zhu, M., Ji, R., Li, Z., Wang, H., Liu, L., Zhang, Z., Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass, Construction and Building Materials, Vol. 112, No. 1, pp. 398-405, (2016). http://doi.org/10.1016/j.conbuildmat.2016.02.183
4. Mi, H., Yang, Z., Su, Z., Wang, T., Li, Z., Huo, W., Preparation of ultra-light ceramic foams from waste glass and fly ash, Advances in Applied Ceramics, Vol. 116, No. 7, pp. 400-408, (2017). https://doi.org/10.1080/17436753.2017.1342394
5. Petersen, R.R., Kőnig, J., Smedskjaer, M.M., Yue, Y., Foaming of CRT panel glass powder using Na2CO3, Glass Technology, Vol. 55, No. 1, (2014). https://www.researchgate.net/publication/263524095_Foaming_of_CRT_panel_glass_powder_using_Na2CO3
6. Gorokhovsky, A.V., Escalante Garcia, J.I., Mendez-Nonell, J., Gorokhovsky, V.A., Mescheryakov, D.V., Foamed glass-ceramic materials based on oil shale by-products, Glass Science and Technology, Vol. 75, No. 5, pp. 259-262, (2002).
7. Fidancevska, E., Mangutova, B., Milosevski, D., Milosevski, M., Bassert, J., Obtaining of dense and highly porous ceramic materials from metallurgical slag, Science of Sintering, Vol. 35, No. 2, pp. 85-91, (2003). https://doi.org/10.2898/SOS0302085F
8. Pelino, M., Recycling of zinc-hydrometallurgy wastes in glass and glass ceramic materials, Waste Management, Vol. 20, No. 7, pp. 561-568, (2000).
9. Taurino, R., Lancellotti, I., Barbieri, L., Leonelli, C., Glass-ceramic foams from borosilicate glass waste, International Journal of Applied Glass Science, pp. 1-10, (2014). https://doi.org/10.1111/ijag.12069
10. Kőnig, J., Petersen, R.R., Yue, Y., Influence of the glass-calcium carbonate mixture’s characteristics on the foaming process and the properties of the foam glass, Journal of the European Ceramic Society, Vol. 34, No. 6, pp. 1591-1598, (2014).
11. Llaudis, A.S., Orts Tari, M.J., Garcia Ten, F.J., Bernardo, E., Colombo, P., Foaming of flat glass cullet using Si3N4 and MnO2 powders, Ceramics International, Vol. 35, No. 5, pp. 1953-1959, (2009).
12. Fernandes, H.R., Ferreira, D.D., Andreola, F., Lancellotti, I., Barbieri, L., Ferreira, J.M.F., Environmental friendly management of CRT glass by foaming with waste egg shells, calcite or diatomite, Ceramics International Part B, Vol. 40, No. 8, pp. 13371-13379, (2014).
13. Andreola, F., Barbieri, L., Lancellotti, I., Ferreira, J.M.F., The use of egg shells to produce Cathode Ray Tube (CRT) glass foams, Ceramics International, Vol. 39, pp. 9071-9078, (2013). https://doi.org/10.1016/j.ceramint.2013.05.002
14. Lunip, A.V., Kanagesan, S., Aziz, S.A.B., Chandra Rao, B.P., Physical properties of foam glass ceramics prepared by cathode ray tube panel glass and clam shells, International Journal of Science, Engineering and Technology Research, Vol. 5, No.7, pp. 2344-2352, (2016).
15. da Silva, L.L., Nunes Ribeiro, L.C., Santacruz, G., Arcaro, S., Koop Alves, A., Pérez Bergman, C., Glass foams produced from glass and yerba mate (Ilex paraguarinensis), FME Transactions, Vol. 46, pp. 70-79, (2016). https://www.mas.bg.ac.rs/_media/istrazivanje/fme/vol46
16. Wu, J.P., Rawlings, R.D., Lee, P.D., Kershaw, M.J., Boccaccini, A.R., Glass-ceramic foams from coal ash and waste glass: production and characterization, Advances in Applied Ceramics, Vol. 105, No. 1, pp. 32-39, (2006).
17. Dragoescu, M.F., Paunescu, L., Axinte, S.M., Fiti, A., The use of microwave fields in the foaming process of flat glass waste, International Journal of Engineering Science & Management Research, Vol. 5, No. 4, pp. 49-54, (2018).
18. Mustaffar, M.I., Mahmud, M.H., Processing of highly porous glass ceramic from glass and fly ash wastes. Proceedings of 3rd International Sciences, Technologies & Engineering Conference (ISTEC)-Material Chemistry, American Institute of Physics (AIP), Vol. 2031, No. 020010-1, Penang, Malaysia, April 17-18, (2018). https://doi.org/10.1063/1.5066966
19. Bourret, J., Michot, A., Tessier-Doyen, N, Naït-Ali, B., Pennec, F., Alzina, A., Vicente, J., Peyratout, C.S., Smith, D.S., Thermal conductivity of very porous kaolin-based ceramics, Journal of the American Ceramic Society, Vol. 97, No. 3, pp. 938-944, (2014). https://doi.org/10.1111/jace.12767
20. Glapor Cellular Glass Gravel-Technical Data, Glapor Werk Mitterteich, Germany, (2017). http://pbizolacje.pl/wp-content/uploads/2016/10/GLAPOR-Technical-data-gravel-SG-800-P-20141001.pdf
21. Pourhakkak, P., Ghaedi, M., Adsorption: Fundamental Processes and Applications in Interface Science and Technology, Book Series, Ghaedi, M. (ed.), Vol. 33, p. 2, (2021).
22. Jones, D.A., Lelyveld, T.P., Mavrofidis, S.D., Kingman, S.W., Miles, N.J., Microwave heating applications in environmental engineering - A review, Resources, Conservation and Recycling, Vol. 34, No. 2, pp. 75-90, (2002). https://doi.org/10.1016/S0921-3449(01)00088-X
23. Kitchen, H.J., Vallance, S.R., Kennedy, J.L., Tapia-Ruiz, N., Carassiti, L., Modern microwave methods in solid-state inorganic materials chemistry: From fundamentals to manufacturing, Chemical Reviews, Vol. 114, No. 2, pp. 1170-1206, (2014). https://doi.org/10.1021/cr4002353
24. Manual of weighing applications, Part 1, Density, (1999). http://www.docplayer.net/21731890-Manual-of-weighing-applications-part1-density.html
25. Anovitz, L.M., Cole, D.R., Characterization and analysis of porosity and pore structures, Reviews in Mineralogy and Geochemistry, Vol. 80, No. 1, pp. 61-164, (2005). https://doi.org/10.2138/rmg.2015.80.04
26. Kharissova, O.V., Kharissov, B.I., Ruiz Valdés, J.J., Review: The use of microwave irradiation in the processing of glasses and their composites, Industrial & Engineering Chemistry Research, Vol. 49, No. 4, pp. 1457-1466, (2010). https://doi.org/10.1021/ie9014765
Published
2022-09-30
How to Cite
Paunescu, L., & Axinte, S. (2022). EXPANDED GLASS BY A NONCONVENTIONAL MICROWAVE HEATING TECHNIQUE FROM RESIDUAL GLASS. Nonconventional Technologies Review, 26(3). Retrieved from http://revtn.ro/index.php/revtn/article/view/380

Most read articles by the same author(s)

1 2 > >>