RESIDUAL ALUMINO-SILICATE MATERIALS (FLY ASH, SLAG, CLAY, AND GLASSWARE) FOR A NONCONVENTIONAL ECOLOGICAL POLYMER OF THE FUTURE
Abstract
Alumino-silicate wastes frequently used in the manufacturing process of geopolymer composites (fly ash and blast furnace slag) were mixed with alumino-silicate wastes non-used previously in this process (clay brick waste and glassware waste). The mixture activation with an alkaline activator based on NaOH 8M and Na2SiO3 aqueous solution that facilitates the geopolymerization reaction developing contributed to the conversion of waste into geopolymer composite, a new type of cheap and ecological materials with mechanical and physical properties suitable for the building sector. The optimal characteristics of specimens were: density of 2042 kg·m-3, apparent porosity of 19.6 %, compression strength of 53.7 MPa, and water absorption of 6.9 vol. %.
References
2. Mohd Mustafa Al Bakri, A., Kamarudin, H., Binhussain, M., Nizar, K., Chemical reactions in the geopolymerization process using fly ash-based geopolymer: A review, Australian Journal of Basic and Applied Sciences, Vol. 5, No. 7, pp. 1199-1203, (2011).
3. Singh, N.B., Fly ash-based geopolymer binder: A future construction material, Minerals, Vol. 8, No. 7, Elsevier, (2018). https://doi.org/10.3390/min8070299
4. Wattanarach, S., Supothina, S., Thavorniti, P., Preparation and properties of metakaolin-based porous geopolymer formed with sodium perborate, Journal of Asian Ceramic Societies, Vol. 10, No. 3, (2022). https://doi.org/10.1080/21870764.2022.2088755
5. Mohd Mustafa Al Bakri, A., Ming, L.Y., Yong, H.C., Mohd Tahir, M.F., Clay-based materials in geopolymer technology, in: Cement-Based Materials, Saleh, H.D.M., Rahman, R.O.A. (eds.), Centre for Advanced Cement Based Materials, Northwestern University, Evanston, Illinois, USA, (2018). https://doi.org/10.5772/intechopen.74438
6. Chiurata, R., Almirón, J., Vargas, M., Tupayachy-Quispe, D., Torres-Almirón, J., Ortiz-Valdivia, Y., Velasco, F., Study of geopolymer composites based on volcanic ash, fly ash, pozzolan, metakaolin and mining tailing, Buildings-MDPI, Vol. 12, 1118, (2022). https://doi.org/10.3390/buildings12081118
7. Huang, X., Yu, L., Li, D., Shiau, Y.C., Preparation and properties of geopolymer from blast furnace slag, Materials Research Innovations, Vol. 19, No. S10, (2015). https://doi.org/10.1179/1432891715Z.0000000002210
8. Mudgal, M., Singh, A., Chouhan, R.K., Acharya, A., Srivastava, A.K., Fly ash red mud geopolymer with improved mechanical strength, Cleaner Engineering and Technology, Vol. 4, Elsevier, (2021). https://doi.org/10.1016/j.clet.2021.100215
9. Lancellotti, I., Ponzoni, C., Bignozzi, M.C., Barbieri, L., Incinerator bottom ash and ladle slag for geopolymer preparation, Waste and Biomass Valorization, Vol. 5, No. 3, pp. 393-401, (2014).
10. Zaharaki, D., Galetakis, M., Komnitsas, K., Valorization of construction and demolition (C & D) and industrial wastes through alkali activation, Construction and Building Materials, Vol. 121, pp.686-693, Elsevier, (2016). https://doi.org/10.1016/j.conbuildmat.2016.06.051
11. Joshi, R.C., Fly ash-production, variability and possible complete utilization, Indian Geotechnical Conference-2010, Bombay, Mumbai, India, December 16-18, (2010).
12. Scarinci, G., Brusatin, G., Bernardo, E., Glass foams in Cellular Ceramics: Structure, Manufacturing, Properties and Applications, Scheffler, M., Colombo, P. (eds.), Wiley-VCH Verlag GmbH & KGaA, Weinheim, Germany, pp. 158-176, (2005).
13. Paunescu, L., Axinte, S.M., Dragoescu, M.F., Cosmulescu, F., Glass-ceramic foams made of very high coal fly ash weight ratio by the direct microwave heating technique, Journal La Multiapp, Vol. 1, No. 4, pp. 33-42, (2020). https://doi.org/10.37899/journallamultiapp.v1i4.242
14. Baycal, G., Dőven, A.G., Utilization of fly ash by pelletization process; theory, application areas and research results, Resources, Conservation & Recycling, Vol. 30, pp. 59-77, Elsevier, (2000).
15. Vilakazi, A.Q., Ndlovu, S., Chpise, L., Shemi, A., The recycling coal fly ash: A review on sustainable developments and economic considerations, Sustainability-MDPI, Vol. 14, No. 4, (2022). https://doi.org/10.3390/su14041958
16. Blissett, R.S., Rowson, N.A., A review of the multi-component utilisation of coal fly ash, Fuel, Vol. 97, pp. 1-23, Elsevier, (2012). https://doi.org/10.1016/j.fuel.2012.03.024
17. Guo, X., Shi, H., Dick, W.A., Compressive strength and microstructural characteristics of class C fly ash geopolymer, Cement and Concrete Composites, Vol. 32, No. 2, pp. 142-147, Elsevier, (2010).
18. Ng, H.T., Yong, H.C., Mohd Mustafa Al Bakri, A., Ng, Y.S., Ridho, B., Study of fly ash geopolymer and fly ash/slag geopolymer in term of physical and mechanical properties, European Journal of Materials Science and Engineering, Vol. 5, No. 4, pp. 187-198, (2020). https://doi.org/10.36868/ejmse.2020.05.04.187
19. Torres-Carrasco, M., Puertas, F., Waste glass in the geopolymer preparation. Mechanical and microstructural characterization, Journal of Cleaner Production, Vol. 90, pp. 397-408, Elsevier, (2015). https://doi.org/10.1016/j.jclepro.2014.11.074
20. Puertas, F., Torres-Carrasco, M., Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation, in Cement and Concrete Research, Vol. 57, pp. 95-104, (2014). https://doi.org/10.1016/j.cemconres.2013.12.005
21. Amritphale, S.S., Bhardwaj, P., Gupta, R., Advanced geopolymerization technology, in Geopolymers and Other Geosynthetics, Alshaaer, M., Jeon, H.Y. (eds.), ISBN 9781789855395, (2019). https://doi.org/10.5772/intechopen.87250
22. Provis, J.L., Rees, C.A., Geopolymer synthesis kinetics, in Geopolymers-Structures, Processing, Properties and Industrial Applications, Woodhead Publishing Series in: Civil and Structural Engineering, Provis, J.L., Van Deventer, J.S.J. (eds.), pp. 118-136, (2009).
23. Lourenco, P. B., Fernandes, F. M., Castro, F., Handmade clay bricks: chemical, physical and mechanical properties, International Journal of Architectural Heritage, Vol. 4, No. 1, pp. 38-58, (2010).
24. Metrology in laboratory-Measurement of mass and derived values, in: Radwag Balances and Scales, 2nd edition, Radom, Poland, pp. 72-73, (2015).
25. A practical guide to compression testing of composites, R-TECH MATERIALS, Port Talbot, UK, September (2018). https://www.r-techmaterials.com/new-and-blog/practical-guide-compression-testing-composites
Copyright (c) 2023 Lucian Paunescu, Adriana Ioana, Eniko Volceanov, Bogdan Valentin Paunescu

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.