EXPANDING RESIDUAL CLEAR FLAT GLASS WITH COAL POWDER IN OXIDANT ATMOSPHERE OF THE OVEN USING WATER GLASS SOLUTION

  • Lucian Paunescu Cosfel Actual SRL Bucharest
  • Sorin Mircea Axinte Daily Sourcing & Research SRL Bucharest
  • Alexandru Fiti Cosfel Actual SRL Bucharest
Keywords: clear flat glass, anthracite, oxidant atmosphere oven, microwave, water glass, manganese dioxide

Abstract

Porous material based on residual glass was non-conventionally made using anthracite as a pore-forming agent under the conditions of an oven with oxidizing atmosphere. Water glass as a protective agent for carbon particles avoiding their early oxidation and manganese dioxide (MnO2) as an oxygen-supplier contributed to obtaining cellular glass with excellent physical, thermal, mechanical, and morphological features. The best specimen made by microwave heating at 790 ℃ using 1 % anthracite, 11.5 % water glass, 1.8 % MnO2, and 5 % water allowed creating a product with excellent heat-insulating features (apparent density of 0.21 g·cm-3, heat conductivity of 0.039 W·m-1·K-1), and acceptable compressive resistance (2.3 MPa), the microstructural appearance being homogeneous with uniformly distributed pores with very low dimensions (0.1-0.4 mm).

References

1. Understanding the Global Energy Crisis, Purdue University Press, Coyle, E.D., Simmons, R.A. (eds.), West Lafayette, Indiana, the United States, pp. 13-26, (2014). ISBN 978-1-55753-701-0.
2. Scarinci, G., Brusatin, G., Bernardo, E., Glass Foams, in Cellular Ceramics: Structure, Manufacturing, Properties and Applications, Scheffler, M., Colombo, P. (eds.), Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany, pp. 158-176, (2005). ISBN 978-3-527-31320-4. https://doi.org/10.1002/3527606696
3. TECHNOpor in the UK/Green Construction, (2016). https://www.green-construction.org.uk/
4. Zegowitz, A., Cellular glass aggregate serving as thermal insulation and a drainage layer, Buildings, Vol. XI, pp. 1-8, (2010). https://web.ornl.gov>conf-archive>48_Zegowitz
5. Garcia Ten, J., Saburit, A., Orts, M.J., Bernardo, E., Colombo, P., Glass foams from oxidation/reduction reactions using SiC, Si3N4 and AlN powders, Glass Technology-European Journal of Glass Science and Technology Part A, Society of Glass Technology Publisher, Sheffield, UK, Vol. 52, No. 4, pp. 103-110, (2011). https://www.researchgate.net/publication/233489043_Glass_foams_from_oxidationreduction_reactions_using_SiC_Si3N4_and_AlN_powders
6. Goltsman, B.M., Yatsenko, A. Role of carbon phase in the formation of foam glass porous structure, Materials (Basel), Pavlikova, M. (ed.), Vol. 15, No. 22, (2022). https://doi.org/10.3390/ma15227913
7. Llaudis, A., Orts, M.J., Garcia-Ten, J., Bernardo, E., Foaming of flat glass cullet using Si3N4 and MnO2 powders, Ceramics International, Elsevier, Vol. 35, No. 5, pp. 1953-1959, (2009). https://doi.org/10.1016/j.ceramint.2008.10.022
8. Fernandes, H.R., Ferreira, D.D., Andreola, F., Lancellotti, I., Barbieri, L., Ferreira, J., Environmental friendly management of CRT glass by foaming with egg shells, calcite or dolomite, Ceramics International, Elsevier, Vol. 40, No. 8, pp. 13371-13379, (2014). https://doi.org/10.1016/j.ceramint.2014.05.053
9. Paunescu, L., Axinte, S.M., Dragoescu, M.F., Cosmulescu, F., Manufacture of cellular glass using oak leaves as a foaming vegetable agent, Journal La Multiapp, Vol. 1, No. 4, pp. 18-27, (2020). https://doi.org/10.37899/journallamultiapp.v1i4.210
10. Donato, R.K., Mija, A., Keratin association with synthetic, biosynthetic and natural polymers: An extensive review, Polymers (Basel), Vol. 12, No. 1, (2020). https://doi.org/10.3390/polym12010032
11. Niu, Y.H., Fan, X.Y., Ren, D., Wang, W., Li, Y., Yang, Z., Cui, L., Effect of Na2CO3 content on thermal properties of foam-glass ceramics prepared from smelting slag, Materials Chemistry and Physics, Elsevier, Vol. 256, (2020). https://doi.org/10.1016/j.matchemphys.2020.123610
12. Dragoescu, M.F., Paunescu, L., Axinte, S.M., Nonconventional technique of sintering/foaming the glass waste using a liquid carbonic foaming agent, Nonconventional Technologies Review, Vol. 24, No. 3, pp. 4-12, (2020). http://revtn.ro/_legacy/pdf3-2020/L1%204_1%20Foaming%20using%20glycerol%20NTR%202020.pdf
13. Østergaard, M.B., Petersen, R.R., Kőning, J., Yue, Y., Effect of alkali phosphate content of foaming of CRT panel glass using Mn3O4 and carbon as foaming agents, Journal of Non-Crystalline Solids, Elsevier, Vol. 482, pp. 217-222, (2018). https://doi.org/10.1016/j.jnoncrysol.2017.12.041
14. Petersen, R.R., König, J., Yue, Y., The mechanism of foaming and thermal conductivity of glasses foamed with MnO2, Journal of Non-Crystalline Solids, Vol. 425, pp. 74-82, (2015). https://doi.org/10.1016/j.noncrysol.2015.05.030
15. Kőnig, J., Petersen, R.R., Yue, Y., Fabrication of highly insulating foam glass made from CRT panel glass, Ceramics International, Elsevier, Vol. 41, No. 8, pp. 9793-9800, (2015). https://doi.org/10.1016/j.ceramint.2015.04.051
16. Zhai, C., Li, Z., Zhu, Y., Zhang, J., Wang, X., Zhao, L., Pan, L., Wang, P., Effect of Sb2O3 on the mechanical properties of the borosilicate foam glasses sintered at low temperature, Advances in Materials Science and Engineering, Wang, H. (acad. ed.), Vol. 2014, No. 2, pp. 1-6, (2014). https://doi.org/10.1155/2014/703194
17. Paunescu, L., Axinte, S.M., Cosmulescu, F., Paunescu, B.V., Alternative thermal insulation building material manufactured by expanding the glass waste with anthracite under the effect of microwave radiation, Revista Romana de Inginerie Civila, Vol. 14, No. 3, pp. 199-210, (2023). https://www.rric.ro/reviste/articole/vol14nr3art6.pdf
18. Paunescu, L., Dragoescu, M.F., Axinte, S.M., Sebe, A.C., Glass foam from borosilicate glass waste produced in microwave field, Nonconventional Technologies Review, Vol. 23, No. 1, pp. 8-12, (2019). https://revtn.ro>revtn>article
19. Sesen, F.E., Practical reduction of manganese oxide, Journal of Chemical Technology Applications, Istanbul Technical University, Istanbul, Turkey, Vol. 1, No. 1, pp. 1-2, (2017).
20. Kőnig, J., Petersen, R.R., Yue, Y., Suvorov, D., Gas-releasing reactions in foam-glass formation using carbon and MnxOy as the foaming agents, Ceramics International, Elsevier, Vol. 43, No. 5, pp. 4638-4646, (2017). https://doi.org/10.1016/j.ceramint.2016.12.133
21. Axinte, S.M., Paunescu, L., Dragoescu, M.F., Sebe, A.C., Manufacture of glass foam by predominantly direct microwave heating of recycled glass waste, Transactions on Networks and Communications, Vol. 7, No. 4, pp. 37-45, (2019). ISSN: 2054-7420. https://doi.org/10.14738/tnc.74.7214
22. Mishra, R.R., Sharma, A.K., Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing, Composites Part A: Applied Science and Manufacturing, Elsevier, Vol. 81, pp. 78-97, (2016). https://doi.org/10.1016/j.compositesa.2015.10.035
23. Jones, D.A., Lelyveld, T.P., Mavrofidis, S.D., Kingman, S.W., Miles, N.J., Microwave heating applications in environmental engineering. A review, Resources, Conservation and Recycling, Vol. 34, No. 2, pp. 75-90, (2002). https://doi.org/10.1016/S0921-3449(01)00088-X
24. Kitchen, H.J., Vallance, S.R., Kennedy, J.L., Tapia-Ruiz, N., Carassiti, L., Modern microwave methods in solid-state inorganic materials chemistry: From fundamentals to manufacturing, Chemical Reviews, American Chemical Society Publications, Washington D.C., the United States, Vol. 114, No. 2, pp. 1170-1206, (2014). https://doi.org/10.1021/cr4002353
25. Kharissova, O.V., Kharissov, B.I., Ruiz Valdés, J.J., Review: The use of microwave irradiation in the processing of glasses and their composites, Industrial & Engineering Chemistry Research, American Chemical Society Publications, Washington D.C., the United States, Vol. 49, No. 4, pp. 1457-1466, (2010). https://doi.org/10.1021/ie9014765
26. Ioana, A., Paunescu, L., Constantin, N., Pollifroni, M., Deonise, D., Petcu, F.S., Glass foam from flat glass waste produced by the microwave irradiation technique, Micromachines (Basel), MDPI Publisher, Basel, Switzerland, Liu, A. (acad.ed.), Vol. 13, No. 4, (2022). https://doi.org/10.3390/mi13040550
27. Paunescu, L., Axinte, S.M., Cosmulescu, F., Paunescu, B.V., The use of calcium carbonate as a foaming agent of glass waste for unconventional manufacture of a light glass foam with adequate mechanical strength, The Bulletin of the Polytechnic Institute from Iasi, Chemistry and Chemical Engineering Section, Politehnium Publishing House, Vol. 68 (72), No. 4, pp. 93-106, (2022). https://doi.org/10.5281/zenodo.7539952
28. Anthracite, PubChem, National Center for Biotechnology Information. https://pubchem.ncbi.nlm.nih.gov/compound/Anthracite
29. Proussevitch, A.A., Sahagian, D.L., Kutolin, V.A., Stability of foams in silicate melts, Journal of Volcanology and Geothermal Research, Elsevier, Vol. 59, No. 1-2, pp. 161-178, (1993). https://doi.org/10.1016/0377-0273(93)90084-5
30. Density and porosity measurements of solid materials, Anderson Materials Evaluation, Inc. https://andersonmaterials.com/density-and-porosity-measurements-of solid-materials/
31. Yüksel, N., The review of some commonly used methods and techniques to measure the thermal conductivity of insulation materials, in Insulation Materials in Context of Sustainability, Almusaed, A., Almssad, A. (eds.), ISBN 978-953-51-2625-6, (2016). https://doi.org/10.5772/64157
Published
2023-12-29
How to Cite
Paunescu, L., Axinte, S., & Fiti, A. (2023). EXPANDING RESIDUAL CLEAR FLAT GLASS WITH COAL POWDER IN OXIDANT ATMOSPHERE OF THE OVEN USING WATER GLASS SOLUTION. Nonconventional Technologies Review, 27(4). Retrieved from http://revtn.ro/index.php/revtn/article/view/438

Most read articles by the same author(s)

1 2 3 4 > >>