REGARDING SOME FUNDAMENTAL ASPECTS OF DESIGN AND DEVELOPMENT OF BESSEL ULTRASONIC CONCENTRATORS USED IN NONCONVENTIONAL MACHINING
Abstract
In the category of nonconventional machining, the use of concentrated energy from ultrasonic mechanical oscillations has long been a practical solution for efficient technological utilization. This work comprehensively develops and addresses an algorithm for sizing circular cross-section ultrasonic concentrators determined by Bessel functions. Bessel functions are canonical solutions to the Bessel differential equation in cylindrical coordinates, as they appear in Laplace's equation or in spherical coordinates derived from Helmholtz's equation. In industrial applications, optimizing process parameters such as vibration amplitude, amplification factor, and mechanical stress in the concentrator is of interest.
References
2. Cleșiu S.R., Considerations regarding the use of the AlCu4Mg1.5Mn alloy in the construction of exponential sonotrodes, Acoustics Notebook no. 22, Romanian Academy Publishing House, (1986).
3. Kazanțev V.A., Rosenberg L.D., The mechanism of ultrasonic cutting, Ultrasonics, vol.3, SUA, (1965).
4. Bindal V.N., Messung der Ultraschallenergie nach dem Festweg-Strahlungsdruckverfahren, Acustika, 46, Bd. 2, S. 223-225, Deutschland, (1980).
5. Iacob C., Mecanică teoretică, Editura Didactică și Pedagogică, București, (1980).
6. Stanomir D., Sisteme electroacustice. Câmpul, radiația și transducția, Editura Tehnică, București, (1984).
7. Amza Gh., Barb D., Constantinescu F., Sisteme ultraacustice, Editura Tehnică, București, (1988).
8. Merkulov L.C., Raschet ultrazvukovuykn kontsentratorov, Akustichsckiy Zhurnal, no. 3, Tom III, pp. 120-238, Moscova, (1957).
9. Popescu S., Oscilaţii mecanice, unde elastice şi acustică, Editura Matrix Rom, Bucureşti, (2003).
10. Luca D., Stan C., Mecanica fizică, Editura Tehnopres, Iași, (2004).
11. Constantinescu G., Teoria sonicității, Ediție revizuită și adăugită, Editura Academiei RSR, București, (1985).
12. Watson G.N., A Treatise on the Theory of Bessel Functions, Second Edition, Cambridge University Press, ISBN 0-521-48391-3, (1995).
13. Nani V.M., Horak C., L’étude des concentrateurs de séction variable et profile après la fonction Bessel, Buletinul Științific al Universității Oradea, pp.103-106, (1992).
14. Bayin S.S., Essentials of Mathematical Methods in Science and Engineering, Chapter 11, Wiley, (2008).
15. Gerlach U.H., Linear Mathematics in Infinite Dimensions, Ohio University, SUA, (2017).
16. Eller M., Loss of derivatives for hyperbolic boundary problems with constant coefficients, Discrete & Continuous Dynamical Systems, Ser. B 23, pp.1347-1361, (2018).
Copyright (c) 2023 Viorel Mihai Nani, Alin Nani, Dumitru Mnerie, Gabriela Victoria Mnerie
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.