REGARDING SOME FUNDAMENTAL ASPECTS OF DESIGN AND DEVELOPMENT OF BESSEL ULTRASONIC CONCENTRATORS USED IN NONCONVENTIONAL MACHINING

  • Viorel Mihai Nani Politehnica University Timisoara
  • Alin Nani Politehnica University Timisoara
  • Dumitru Mnerie Politehnica University Timisoara
  • Gabriela Victoria Mnerie National Research & Development Institute for Welding and Material Testing - ISIM
Keywords: ultrasonic concentrators, elastic systems, mechanical waves, Bessel functions

Abstract

In the category of nonconventional machining, the use of concentrated energy from ultrasonic mechanical oscillations has long been a practical solution for efficient technological utilization. This work comprehensively develops and addresses an algorithm for sizing circular cross-section ultrasonic concentrators determined by Bessel functions. Bessel functions are canonical solutions to the Bessel differential equation in cylindrical coordinates, as they appear in Laplace's equation or in spherical coordinates derived from Helmholtz's equation. In industrial applications, optimizing process parameters such as vibration amplitude, amplification factor, and mechanical stress in the concentrator is of interest.

References

1. Shu-Yu S. Y. J. L., Precise design of large dimension exponential horn based on energy modification method, Applied Acoustics, no 4, 003, (2007).
2. Cleșiu S.R., Considerations regarding the use of the AlCu4Mg1.5Mn alloy in the construction of exponential sonotrodes, Acoustics Notebook no. 22, Romanian Academy Publishing House, (1986).
3. Kazanțev V.A., Rosenberg L.D., The mechanism of ultrasonic cutting, Ultrasonics, vol.3, SUA, (1965).
4. Bindal V.N., Messung der Ultraschallenergie nach dem Festweg-Strahlungsdruckverfahren, Acustika, 46, Bd. 2, S. 223-225, Deutschland, (1980).
5. Iacob C., Mecanică teoretică, Editura Didactică și Pedagogică, București, (1980).
6. Stanomir D., Sisteme electroacustice. Câmpul, radiația și transducția, Editura Tehnică, București, (1984).
7. Amza Gh., Barb D., Constantinescu F., Sisteme ultraacustice, Editura Tehnică, București, (1988).
8. Merkulov L.C., Raschet ultrazvukovuykn kontsentratorov, Akustichsckiy Zhurnal, no. 3, Tom III, pp. 120-238, Moscova, (1957).
9. Popescu S., Oscilaţii mecanice, unde elastice şi acustică, Editura Matrix Rom, Bucureşti, (2003).
10. Luca D., Stan C., Mecanica fizică, Editura Tehnopres, Iași, (2004).
11. Constantinescu G., Teoria sonicității, Ediție revizuită și adăugită, Editura Academiei RSR, București, (1985).
12. Watson G.N., A Treatise on the Theory of Bessel Functions, Second Edition, Cambridge University Press, ISBN 0-521-48391-3, (1995).
13. Nani V.M., Horak C., L’étude des concentrateurs de séction variable et profile après la fonction Bessel, Buletinul Științific al Universității Oradea, pp.103-106, (1992).
14. Bayin S.S., Essentials of Mathematical Methods in Science and Engineering, Chapter 11, Wiley, (2008).
15. Gerlach U.H., Linear Mathematics in Infinite Dimensions, Ohio University, SUA, (2017).
16. Eller M., Loss of derivatives for hyperbolic boundary problems with constant coefficients, Discrete & Continuous Dynamical Systems, Ser. B 23, pp.1347-1361, (2018).
Published
2023-12-29
How to Cite
Nani, V., Nani, A., Mnerie, D., & Mnerie, G. (2023). REGARDING SOME FUNDAMENTAL ASPECTS OF DESIGN AND DEVELOPMENT OF BESSEL ULTRASONIC CONCENTRATORS USED IN NONCONVENTIONAL MACHINING. Nonconventional Technologies Review, 27(4). Retrieved from http://revtn.ro/index.php/revtn/article/view/448

Most read articles by the same author(s)