• Stefan Izvorean Politehnica University Timisoara, Mechanical Engineering Faculty
  • Aurel Nechita Politehnica University Timisoara, Mechanical Engineering Faculty
  • Claudiu Roteliuc Politehnica University Timisoara, Mechanical Engineering Faculty
  • Cristian Nica Politehnica University Timisoara, Mechanical Engineering Faculty
  • Adrian Cioabla Politehnica University Timisoara, Mechanical Engineering Faculty
  • Virgil Stoica Politehnica University Timisoara, Mechanical Engineering Faculty
Keywords: 3D printing, fabrication parts, PLA material, FDM printing


Nowadays the current trends involve different manufacturing technologies in order to create components with the same properties of classic ones, or even better, while having lower production costs. In this regard, 3D printing is one relatively new approach which involves a method through which successive layers of material are added one on top of another and in this way the component „grows” during the process. In direct connection with the aforementioned technology, the purpose of this paper is to establish the possibilities of manufacturing different functional components for experimental stands used for laboratory applications and created together with students from the Road Vehicles specialization in the Mechanical Engineering Faculty, Politehnica University Timisoara.


1. Barry Berman, 3-D printing: The new industrial revolution, Business Horizons (2012) 55, 155—162).
2. Hollister, S. J. Porous scaffold design for tissue engineering. Nat. Mater. 2005, 4 (7), 518−524.
3. Jakus, A. E.; Rutz, A. L.; Jordan, S. W.; Kannan, A.; Mitchell, S. M.; Yun, C.; Koube, K. D.; Yoo, S. C.; Whiteley, H. E.; Richter, C.-P.; Galiano, R. D.; Hsu, W. K.; Stock, S. R.; Hsu, E. L.; Shah, R. N.Hyperelastic “bone”: A highly versatile, growth factor−free, osteoregenerative, scalable, and surgically friendly biomaterial. Sci. Transl. Med. 2016, 8 (358).
4. Kang, H.-W.; Lee, S. J.; Ko, I. K.; Kengla, C.; Yoo, J. J.; Atala, A. A, 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 2016, 34 (3), 312−319.
5. Murphy, S. V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32 (8), 773−785.
6. Coulais, C.; Teomy, E.; de Reus, K.; Shokef, Y.; van Hecke, M. Combinatorial design of textured mechanical metamaterials. Nature, 2016, 535 (7613), 529−532.
7. Sydney Gladman, A.; Matsumoto, E. A.; Nuzzo, R. G.; Mahadevan, L.; Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 2016, 15 (4), 413−418.
8. Kokkinis, D.; Schaffner, M.; Studart, A. R. Multimaterial magnetically assisted 3D printing of composite materials. Nat. Commun. 2015, 6, 8643
9. Qin, Z.; Compton, B. G.; Lewis, J. A.; Buehler, M. J. Structural optimization of 3D-printed synthetic spider webs for high strength. Nat. Commun. 2015, 6, 7038
10. Au, A. K.; Huynh, W.; Horowitz, L. F.; Folch, A. 3D-Printed Microfluidics. Angew. Chem., Int. Ed. 2016, 55 (12), 3862−3881
11. Waheed, S.; Cabot, J. M.; Macdonald, N. P.; Lewis, T.; Guijt, R. M.; Paull, B.; Breadmore, M. C. 3D printed microfluidic devices: enablers and barriers. Lab Chip 2016, 16 (11), 1993−2013
12. Wehner, M.; Truby, R. L.; Fitzgerald, D. J.; Mosadegh, B.; Whitesides, G. M.; Lewis, J. A.; Wood, R. J. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 2016, 536 (7617), 451−455
13. Rus, D.; Tolley, M. T. Design, fabrication and control of soft robots. Nature, 2015, 521 (7553), 467−475
14. Bartlett, N. W.; Tolley, M. T.; Overvelde, J. T. B.; Weaver, J. C.; Mosadegh, B.; Bertoldi, K.; Whitesides, G. M.; Wood, R. J. A 3Dprinted, functionally graded soft robot powered by combustion. Science 2015, 349 (6244), 161−165
15. Gibson, I.; Rosen, D.; Stucker, B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing; Springer: 2014
16. Berman, B.: 3-D printing: The new industrial revolution. Bus. Horiz. 55(2):155–162 (2012)
17. Mircea Dorin Vasilescu, Tiberiu Aurel Vasilescu, Ioan Vasile Groza – Economical Considerations over 3D Printing Components for Abrasive Water Jet Machinery, Advanced Materials Research, ISSN: 1662-8985, Vol. 1146, pp 84-91, 2018
18. (Ksawery Szykiedans, Wojciech Credo, Mechanical properties of FDM and SLA low-cost 3-D prints, Procedia Engineering 136 ( 2016 ) 257 – 262)
19. A. Bellini, S. Güçeri, Mechanical characterization of parts fabricated using fused deposition modeling, Rapid Prototyping Journal 9 (2003) 252–264.
20. J.F. Rodríguez, J.P. Thomas, J.E. Renaud, Mechanical behavior of acrylonitrile butadiene styrene (ABS) fused deposition materials. Experimental investigation, Rapid Prototyping Journal 7 (2001) 148–158
21. Stephens, B., P. Azimi, Z. El Orch, and T. Ramos: Ultrafine particle emissions from desktop 3D printers. Atmos. Environ. 79(0):334–339 (2013)
22. Afshar-Mohajer, N., C.-Y. Wu, T. Ladun, D.A. Rajon, and Y. Huang: Characterization of particulate matters and total VOC emissions froma binder jetting 3D printer. Build. Environ. 93(Part 2):293–301 (2015)
23. Kim, Y., C. Yoon, S. Ham, et al.: Emissions of nanoparticles and gaseous material from3Dprinter operation. Environ. Sci. Technol. 49(20):12044–12053 (2015)
24. Azimi, P., D. Zhao, C. Pouzet, N.E. Crain, and B. Stephens: Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environ. Sci. Technol. 50(3):1260–1268 (2016)
25. Steinle, P.: Characterization of emissions from a desktop 3D printer and indoor airmeasurements in office settings. J. Occup. Environ. Hyg. 13(2):121–132 (2016)
26. Evan L. Floyd, Jun Wang, and James L. Regens, Fume emissions from a low-cost 3-D printer with various filaments, JOURNAL of Occupational and Environmental Hygiene, 2017, Vol. 14, No. 7, 523-533, 2017
27. J. M. Pearce, ``Building research equipment with free, open-source hardware,'' Science, vol. 337, no. 6100, pp. 1303_1304, 2012
28. Mircea Dorin Vasilescu, Ioana Ionel - 3D printer FABLAB for students at POLITEHNICA University Timisoara, Advanced Learning Technologies (ICALT), 2017 IEEE 17th International Conference on Advanced Learning Technologies (ICALT), IEEE Xplore, SCOPUS , 2161-377X, 978-1-5386-3870-5, 512-513, DOI 10.1109/ICALT.2017.106
How to Cite
Izvorean, S., Nechita, A., Roteliuc, C., Nica, C., Cioabla, A., & Stoica, V. (2018). POSSIBLE ACHIEVEMENTS IN COMPONENT MANUFACTURING AND THEIR APPLICATIONS IN MOTOR VEHICLES FOR EXPERIMENTAL STANDS BY FDM 3D PRINTING. Nonconventional Technologies Review, 22(2). Retrieved from http://revtn.ro/index.php/revtn/article/view/47