CONSIDERATIONS OF THE INFLUENCE OF PROCESS PARAMETERS ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR PROCESSED AL ALLOYS

  • Emilia Dobrin National Research & Development Institute for Welding and Material Testing - ISIM
  • Lia Nicoleta Botila National Research & Development Institute for Welding and Material Testing - ISIM
  • Gabriela Victoria Mnerie National Research & Development Institute for Welding and Material Testing - ISIM
Keywords: aluminium alloys, cooling medium (air, underwater, cryogenic)

Abstract

Aluminium alloys are widely employed across numerous thanks to their superior combination of strength, lightweight characteristics and corrosion resistance. In recent years, Friction stir processing (FSP) has come up as a promising technique for machining aluminium alloys, enabling greater control over microstructural evolution and mechanical properties. This paper provides an in-depth exploration the impact of process parameters on the microstructure and mechanical properties of aluminium alloys processed by FSP. The study focuses on the systematic investigation of the influence of the principle process parameters, including rotational speed, machining speed and applied pressure, on the microstructure and resulting mechanical performance of FSP machined aluminium alloys.  Furthermore, the mechanical properties of FSP treated aluminium alloys are measured by a comprehensive set of tests, including tensile tests, hardness measurements and fracture tests. The relationship between process parameters and the mechanical behaviour of the alloys is analysed in detail to identify the optimum conditions for achieving the desired properties. Findings show that process parameters plays a significant role in defining the microstructure and mechanical properties of alloys.

References

1. Khedr, M., Hamada, A.W., Review on the Solid-State Welding of Steels: Diffusion Bonding and Friction Stir Welding Processes. Metals, 13, 54, (2023).
2. Akbari, M.; Parviz, A.; A Review on Friction Stir Welding/Processing: Numerical Modeling, Materials, 16, no. 17: 5890, (2023).
3. Mishra, R.S.; Ma, Z.Y.; Friction stir welding and processing. Mater. Sci. Eng. R Rep.,50, 1-78, (2005).
4. Akbari, M.; Ezzati, M.; Investigation of the effect of tool probe profile on reinforced particles distribution using experimental and CEL approaches. Int. J. Lightweight Mater. Manuf., 5, 213-223, (2022).
5. Das S.S.; Raja A.R.; Nautiyal H.; A Review on Aluminum Matrix Composites Synthesized by FSP. Macromol. Symp.,407, 2200119, (2023).
6. Papantoniou IG.; Markopoulos A.P.; Manolakos D.E.; A New Approach in Surface Modification and Surface Hardening of Aluminum Alloys Using Friction Stir Process: Cu-Reinforced AA5083. Materials; 13(6): 1278. https://doi.org/10.3390/ma13061278, (2020).
7. Glazoff, M.V.; Khvan, A.V.; Zolotorevsky V.S., Structure and Microstructure of Aluminum Alloys in As-Cast State. Cast. Aluminum Alloys, 133-234, (2019).
8. Mishra, R.S., Komarasamy, M.; Friction Stir Welding of High Strength 7XXX Aluminum Alloys. Elsevier Inc.: Amsterdam, The Netherlands, (2016).
9. Kissell, J.R., Ferry, R.L.; Aluminum structures: A guide to their specifications and design; John Wiley & Son Inc.: New York, NY, USA, (2002).
10. Sharma, V., Prakash, U.; Microstructural and mechanical characteristics of AA2014/SiC surface composite fabricated by friction stir processing, 4th International Conference on Materials Processing and Characterization, Materials Today Proceedings 2(4-5): 2666-2670, DOI: 10.1016/j.matpr.2015.07.229, (2015).
11. Cary Huang, L., He, L.; Effects of non-isothermal aging on microstructure, mechanical properties and corrosion resistance of 2A14 aluminum alloy. J. Alloys Compd., 842, 155542, (2020).
12. Wang, J.; Lu, Y.; Effects of cooling condition on microstructural evolution and mechanical properties of friction stir processed 2A14 aluminum alloy. Mater Res Express, (2021).
13. https://www.belmontmetals.com/product/a356-2-aluminum-alloy.
14. Akopyan, T.K.; Belov, N.A., Characterization of structure and hardness at aging of the A319 type aluminum alloy with Sn trace addition, Journal of Alloys and Compounds Volume 921, 15 November 2022, 166109, (2022).
15. Helzer, H.B.; Modern welding technology; Pearson/Prentice Hall: Upper New Jersey River, NJ, USA, (2005).
16. Mahoney, M.W.; Rhodes, C.G.; Properties of friction-stir-welded 7075 T651 aluminum. Met. Mater. Trans. A, 29, 1955-1964. (1998).
17. https://www.qdhcmetal.com/Aluminum-Sheet-and-Square/5083-H116-Aluminum-Plate.
18. https://matmatch.com/learn/material/7075-t6-aluminium.
19. Satyanarayana, MVNV.; Adepu, K.; Influence of cooling media in achieving grain refinement of AA2014 alloy using friction stir processing, Proc IMechE Part C: J Mechanical Engineering Science 0(0), Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989-1996 (vols 203-210) 234(22):095440622092285, DOI: 10.1177/0954406220922858, (2020).
20. Carvalho, C.J.; Lasecki, J.V.; A Comparative Investigation on the High Temperature Fatigue of Three Cast Aluminum Alloys. SAE Technical Papers, DOI: 10.4271/2004-01-1029, (2004).
21. Medlen, D.; Bolibruchová, D.; Effect of Sb-Modification on the Microstructure and Mechanical Properties of Secondary Alloy 319, Archives of Metallurgy and Materials 61(2), (2016).
22. https://matmatch.com/learn/material/7075-t6-aluminium;
23. Anggono, A.D.; Widodo, T.; Influence of tool rotation and welding speed on the friction stir welding of AA 1100 and AA 6061-T6, Human-Dedicated Sustainable Product and Process Design: Materials, Resources, and Energy AIP Conf. Proc. 1977, 020054-1-020054-8, DOI: 10.1063/1.5042910, (2018).
24. Haifeng, Y.; Hongyun, Z.; Effect of Stirring Pin Rotation Speed on Microstructure and Mechanical Properties of 2A14-T4 Alloy T-Joints Produced by Stationary Shoulder Friction Stir Welding, Materials, 14, 1938. https://doi.org/10.3390/ma14081938, (2021).
25. Kouam, J.; Songmene, V.; On chip formation during drilling of cast aluminum alloys, Machining Science and Technology 17(2), DOI: 10.1080/10910344.2013.780546, (20213).
26. https://www.smithmetal.com/pdf/aluminium/2xxx/2014a.pdf.
27. Satyanarayana, K.A.; Influence of cooling media in achieving grain refinement of AA2014 alloy using friction stir processing, Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989-1996 (vol. 203-210) 234 (22), 095440622092285, DOI: 10.1177/0954406220922858, (2020).
28. Essam, M.; Effect of Multi-Pass Friction Stir Processing on Mechanical Properties for AA2024/Al2O3 Nanocomposites, Materials, 10, 1053; doi:10.3390/ma10091053; (2017).Saeidi, M.; Besharati Givi, M.K.; Effect of Al2O3 nanoparticles on Microstructure and tensile strength of dissimilar friction stir welded Nanocomposite joint in AA7075 and AA5083 aluminum alloys, 4th International Conference of Ultrafine Grained and Nanostructured Materials (UFGNSM2013), DOI: 10.13140/2.1.3248.0965, (2013).
29. Vipin, S.; Prakash, U., Microstructural and mechanical characteristics of AA2014/SiC surface composite fabricated by friction stir processing, Materials Today: Proceedings 2, 2666-2670, (2015);
30. Santella, M.L.; Engstrom, T.; Effects of friction stir processing on mechanical properties of the cast aluminum alloys A319 and A356, Scripta Materialia 53 201-206, (2005).
31. Kathiresan, G.; Ragunathan, S.; Microstructural characterization of friction stir welded AA5083 aluminum alloy joints, ITEGAM-JETIA, Manaus, v.9 n.43, p. 64-70, Sept./Oct., (2023).
32. Worood, H.; Mohsin, A.Al-S.; Fatigue and Fracture Behaviours of FSW and FSP Joints of AA5083-H111 Aluminium Alloy, IOP Conf. Series: Materials Science and Engineering 454 012055,doi:10.1088/1757-899X/454/1/012055, (2018).
33. Nourbakhsha, S.H.; Atrian, A.; Effect of Submerged Multi-pass Friction Stir Process on the Mechanical and Microstructural Properties of Al7075 Alloy, Journal of Stress Analysis, Vol. 2, No. 1, Spring-Summer, http://dx.doi.org/ 10.22084/jrstan.2017.14013.102. (2017).
The papers presented during the Conference will be published in the Nonconventional Technologies Review https://www.revtn.ro/index.php/revtn, scientific publication established in 1997 with quarterly issuing, B+ Review CNCSIS, indexed in several international databases: ProQuest, EBSCOhost, DOAJ, Index Copernicus, Google Scholar and CAB Abstracts. Some selected papers will be published also in LOGFORUM Journal, indexed in Emerging Source Citation Clarivate Analytics Web of Science, Scopus, DOAJ, ProQuest, EBSCOhost, Index Copernicus https://www.logforum.net/en/about_the_journal and Technical Gazette Jounal, indexed in Emerging Source Citation Clarivate Analytics Web of Science, Scopus, iThenticate, Crossref https://www.tehnicki-
Published
2024-09-30
How to Cite
Dobrin, E., Botila, L., & Mnerie, G. (2024). CONSIDERATIONS OF THE INFLUENCE OF PROCESS PARAMETERS ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR PROCESSED AL ALLOYS. Nonconventional Technologies Review, 28(3). Retrieved from http://revtn.ro/index.php/revtn/article/view/473