RECENT DEVELOPMENTS IN NONCONVENTIONAL MACHINING OF GLASSES: A REVIEW
Abstract
This article presents a review on some important recent research, development, and innovations related to the nonconventional machining of glass material. Nonconventional machining processes were identified suitable for machining of glass, years ago, and from then to now various technological developments have made nonconventional machining a viable alternate to the conventional machining of glass material. In this article, we have mainly focused on three important nonconventional machining processes, namely, last cutting, ultrasonic machining, and electrochemical discharge machining (ECDM). Novel aspects, effects of process parameters, and salient features are discussed. Mainly, previous five years’ work is reviewed. This review finally ends with a conclusion and important future research directions.
References
2. Paunescu, L., Axinte, S., Volceanov, E., & Paunescu, B. (2024). Non-Conventional Cold Preparation of Cellular Glass Under Economical and Environmentally Friendly Conditions. Nonconventional Technologies Review, 28(1). Retrieved from https://revtn.ro/index.php/revtn/article/view/459.
3. Jahan MP, Perveen A, Rumsey AM. A review on the conventional, non-conventional, and hybrid micromachining of glass. Machining Science and Technology. 2019;23(2):264–338. https://doi.org/10.1080/10910344.2019.1575411.
4. Nagaraj Y, Jagannatha N, Sathisha N. Hybrid Non Conventional Machining of Glass - A Review. Applied Mechanics and Materials. 2019;895:8–14. https://doi.org/10.4028/www.scientific.net/amm.895.8.
5. Nguyen VT, Toda M, Ono T. An Investigation of Processes for Glass Micromachining. Micromachines. 2016;7(3):51. https://doi.org/10.3390/mi7030051.
6. Pawanr P, Ballav R, Kumar A. Micromachining of Borosilicate Glass: A State of Art Review. Materials Today Proceedings. 2017;4(2, Part A):2813-2821.
7. Sandor, R., Szabo, K., Pop, A., Pasca, I., & Sikolya, L. (2023). Surface Quality Analysis in Laser Cutting of Metallic Materials: An Experimental Study. Nonconventional Technologies Review, 27(4). Retrieved from https://revtn.ro/index.php/revtn/article/view/447.
8. Bhowmik S, Jagadish, Gupta K. Modeling and Optimization of Ultrasonic Machining Process. In: Modeling and Optimization of Advanced Manufacturing Processes. Springer Briefs in Applied Sciences and Technology. Springer, Cham; 2019. https://doi.org/10.1007/978-3-030-00036-3_4.
9. Singh KJ, Ahuja IS, Kapoor J. Ultrasonic, chemical-assisted ultrasonic and rotary ultrasonic machining of glass: a review paper. World Journal of Engineering. 2018;15(6):751-770. https://doi.org/10.1108/WJE-04-2018-0114.
10. Ranganayakulu J, Srihari PV, Rao KV, Raj RS, Mahajanshetti M. Machining Strategies for Micromachining of Glass Using Electrochemical Discharge Machining. In: Kumar PR, Dvim JP, eds. Innovative Development in Manufacturing Processes. CRC Press; 2023. p. 132-147.
11. Zhang L, Kong L, Lei W, et al. Review of electrochemical discharge machining technology for insulating hard and brittle materials. J Braz. Soc. Mech. Sci. Eng. 2024;46:143. https://doi.org/10.1007/s40430-024-04739-8.
12. Anwar S, Nasr MM, Pervaiz S, Al-Ahmari A, Alkahtani M, El-Tamimi A. A study on the effect of main process parameters of rotary ultrasonic machining for drilling BK7 glass. Advances in Mechanical Engineering. 2018;10(1). doi:10.1177/1687814017752212.
13. Kumar S, Doloi B, Bhattacharyya B. Experimental investigation into Micro Ultrasonic Machining of Quartz. IOP Conf. Series: Materials Science and Engineering. 2019;653:012027. IOP Publishing doi:10.1088/1757-899X/653/1/012027.
14. Debnath T, Patra KK, Patowari PK. Gang Drilling of Square Micro-Holes on Glass Using USM. In: Shunmugam M, Kanthababu M, eds. Advances in Unconventional Machining and Composites. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore; 2020. https://doi.org/10.1007/978-981-32-9471-4_45.
15. Singh AM, Majhi R, Patowari PK. Machinability Study for Slot Cutting on Glass Using Ultrasonic Machining Process. In: Pandey K, Misra R, Patowari P, Dixit U, eds. Recent Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore; 2021. https://doi.org/10.1007/978-981-15-7711-6_76.
16. Rai S, Vishnoi M, Mamatha TG. A novel investigation of sacrificing layer effect on micro-channel fabrication of glass using rotary ultrasonic machining. J Braz. Soc. Mech. Sci. Eng. 2023;45:350. https://doi.org/10.1007/s40430-023-04273-z.
17. Sindhu D, Thakur L, Chandna L. Parameter Optimization of Rotary Ultrasonic Machining on Quartz Glass Using Response Surface Methodology (RSM). Silicon. 2020;12:629-643.
18. Kumar V, Singh H. Optimization of rotary ultrasonic drilling of optical glass using Taguchi method and utility approach. Engineering Science and Technology, an International Journal. 2019;22(3):956-965.
19. Sharma A, Jain V, Gupta D. A novel investigation study on float glass hole surface integrity & tool wear using Chemical assisted Rotary ultrasonic machining. Materials Today Proceedings. 2020;26:632-637.
20. Sharma A, Jain V, Gupta D. In-situ experimental investigation using chemical-assisted rotary ultrasonic drilling process on fragile material. Int J Interact Des Manuf. 2024. https://doi.org/10.1007/s12008-024-01760-y.
21. Wang J, Fu J, Wang J, Du F, Liew PJ, Shimada K. Processing capabilities of micro ultrasonic machining for hard and brittle materials: SPH analysis and experimental verification. Precision Engineering. 2020;63:159-169.
22. Lian H, Zhang L, Chen X, Deng C, Mo Y. Design of a Template-Based Electrophoretically Assisted Micro-Ultrasonic Machining Micro-Channel Machine Tool and Its Machining Experiment. Micromachines. 2023;14(7):1360. https://doi.org/10.3390/mi14071360.
23. Bellubbi S, Sathisha N, Mallick B. Multi Response Optimization of ECDM Process Parameters for Machining of Microchannel in Silica Glass Using Taguchi–GRA Technique. Silicon. 2022;14:4249–4263. https://doi.org/10.1007/s12633-021-01167-4.
24. Vani VV. Performance of SiC and Al2O3 Loose Abrasives in the Electrochemical Discharge Machining Process. Journal of Advanced Manufacturing Systems. 2022;21(1):233-253.
25. Arab J, Chauhan HS, Dixit P. Electrochemical discharge machining of soda lime glass for MEMS applications. International Journal of Precision Technology. 2019;8(2/3/4):220-236.
26. Yang CT, Ho SS, Yan BH. Micro Hole Machining of Borosilicate Glass through Electrochemical Discharge Machining (ECDM). Key Engineering Materials. 2001;196:149-166.
27. Bhargav KVJ, Balaji PS, Sahu RK. Micromachining of borosilicate glass using an electrolyte-sonicated-µ-ECDM system. Materials and Manufacturing Processes. 2022;38(1):64-77. https://doi.org/10.1080/10426914.2022.2089893.
28. Sharma MP, Gupta PK, Kumar G. Modeling and Simulation of Electrochemical Discharge Machining for Fabrication of Micro-Channel on Glass. Arab J Sci Eng. 2023;48:2701–2713. https://doi.org/10.1007/s13369-022-06944-w.
29. Singh S, Singh S, Chaudhary N, Grover S, Yadav V. Experimental investigation of micro-machining on borosilicate glass using mist flow aided WECDM. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2023;0(0). doi:10.1177/09544089231189469.
30. Saxena R, Mandal A, Chattopdhya S, et al. Experimental investigation of electrochemical discharge drilling (ECDM-D) performance characteristics for N-BK7 glass material. Int J Interact Des Manuf. 2022. https://doi.org/10.1007/s12008-022-01057-y.
31. Appalanaidu B, Dvivedi A. On the use of sacrificial layer in ECDM process for form accuracy. Journal of Manufacturing Processes. 2022;79:219-232.
32. Madhavi JB, Hiremath SS. Generation and Characterization of Borosilicate Glass Nanoparticles using in-House Developed μ-ECDM Setup. Silicon. 2022;14:1713–1729. https://doi.org/10.1007/s12633-021-00986-9.
33. Singh R, Singh DK, Singh J. Parametric analysis and optimization of magnetic field-assisted electrochemical spark drilling (MF-ECSD). Engineering Research Express. 2023;5(2):025036. 10.1088/2631-8695/acd225.
34. Singh T, Dvivedi A, Arya RK. Fabrication of micro-slits using W-ECDM process with textured wire surface: An experimental investigation on kerf overcut reduction and straightness improvement. Precision Engineering. 2019;59:211-223.
35. Hossan MR, Konari PR. Laser micromachining of glass substrates for microfluidics devices. AIP Conf. Proc. 2021;2324:060002.
36. Yasman N, Fouzy RMRM, Zawawi MZM. Direct fabrication of glass microfluidic channel using CO2 laser. Materials Today Proceedings. 2024;97:52-60.
37. Mačernytė L, Skruibis J, Vaičaitis V, Sirutkaitis R, Balachninaitė O. Femtosecond Laser Micromachining of Soda–Lime Glass in Ambient Air and under Various Aqueous Solutions. Micromachines. 2019;10(6):354. https://doi.org/10.3390/mi10060354.
38. Rahaman ME, Uno K. Drilling of cylindrical holes in Crown glass by a short-pulse flat-top CO2 laser beam. Laser Physics. 2023;33(9):096004.
39. Posa VV, Sundaram M. Experimental Study of Micromachining on Borosilicate Glass Using CO2 Laser. J. Manuf. Sci. Eng. 2021;143(5):051007.
40. Kang S, Shin J. Experimental investigation on the CO2 laser cutting of soda-lime glass. J Mech Sci Technol. 2020;34:3345–3351. https://doi.org/10.1007/s12206-020-0727-x.
41. Fan X, Rong Y, Zhang G, Wu C, Luo Y, Huang Y. High-profile-quality microchannels fabricated by UV picosecond laser for microfluidic mixing. Optics and Laser Technology. 2024;170:110314.
42. Markauskas E, Zubauskas L, Voisiat B, Gečys P. Efficient Water-Assisted Glass Cutting with 355 nm Picosecond Laser Pulses. Micromachines. 2022;13(5):785. https://doi.org/10.3390/mi13050785.
43. Furumoto T, Hashimoto Y, Ogi H, Kawabe T, Yamaguchi M, Koyano T, Hosokawa A. CO2 laser cleavage of chemically strengthened glass. Journal of Materials Processing Technology. 2021;289:116961.
44. Werr F, Eppelt U, Müllers L, Ligny Dd. Ultra-Short-Pulse Laser Filaments for Float Glass Cutting: Influence of Laser Parameters on Micro Cracks Formation. Front. Phys. 2022;10:862419. doi: 10.3389/fphy.2022.862419.
45. Ahsan MS, Sohn IB, Choi HK. Gorilla Glass Cutting Using Femtosecond Laser Pulse Filaments. Applied Sciences. 2024;14(1):312. https://doi.org/10.3390/app14010312.
46. Li W, Rong Y, Liu W, Zhang G, Wang H, Huang Y, Gao Z. Investigation of solar float glass hole cutting using 532 nm nanosecond pulsed laser. Optik. 2020;222:165457.
47. Dong H, Huang Y, Li W, Li J, Rong Y. Error analysis in 532 nm nanosecond laser cutting of solar glass. Optik. 2021;231:166451.