• Machedon-Pisu Mihai Departement of Electronics & Computers, Transilvania University of Brasov
Keywords: solar sintering, electrical contacts, copper alloys, thermal stability, clean energy


Solar sintering is a promising method based on clean energy that could be used for obtaining electrical contacts. As shown in this paper, in terms of thermal stability, it is better than other modern sintering technologies like microwave and spark plasma sintering that have applications in the electrical field. This paper analyzes the possibility to sinter the copper alloy in order to improve its properties without decreasing the electrical conductivity of the copper material. The compacted pellets of Cu-TiC-graphite were sintered in a solar furnace by heating and maintaining the pellets at a precise temperature in a controlled environment (Argon) at temperatures around 700-850°C for a maintain time of 20-30 minutes. This configuration was performed by using the MSSF Solar Furnace of the PROMES-CNRS facility in France. Initial tests have shown that electrical conductivity does not suffer a significant reduction while wear rate and friction coefficient are better or similar to those for pure copper


1. Stanciu, E. M., Pascu, A., Roată, I. C., Croitoru, C., Tierean, M., Rosca, J. M., & Hulka, I. (2018). Solar radiation synthesis of functional carbonaceous materials using Al2O3/TiO2-Cu-HA doped catalyst. Applied Surface Science, 438,

2. Kouam, J., Ait-Ahcene, T., Plaiasu, A. G., Abrudeanu, M., Motoc, A., Beche, E., & Monty, C. (2008). Characterization and properties of ZnO based nanopowders prepared by solar physical vapor deposition (SPVD). Solar Energy.

3. Lee, W. E. (1996). Ceramic processing and sintering. International Materials Reviews.

4. Kang, S.-J. L. S.-J. L., Fang, Z. Z., Wang, H., Heaney, D. F., Fang, Z. Z., German, R. M., Martin, C. L. (2010). Sintering of Advanced Materials. Sintering of Advanced Materials.

5. Oliveira, F. A. C., Shohoji, N., Fernandes, J. C., & Rosa, L. G. (2005). Solar sintering of cordierite-based ceramics at low temperatures. Solar Energy, 78(3), 351–361.

6. Alayli, N., Schoenstein, F., Girard, A., Tan, K. L., Dahoo, P. R., Chaudhari, R., Abrams, H. (2013). Sintering Applications. Materials Science and Engineering A, 3(1–2), 350.

7. Fallis, A. (2013). Advanced Science And Technology Of Sintering. Journal of Chemical Information and Modeling (Vol. 53).

8. Yang, J. H., Kim, Y.-W., Kim, J. H., Kim, D.-J., Kang, K. W., Rhee, Y. W., … Song, K. W. (2008). Pressureless Rapid Sintering of UO2 Assisted by High-frequency Induction Heating Process. Journal Of The American Ceramic Society.

9. Eriksson, M., Radwan, M., & Shen, Z. (2013). Spark plasma sintering of WC, cemented carbide and functional graded materials. International Journal of Refractory Metals and Hard Materials.

10. Moraru, C.G., Șerban, C.E., The influence of some parameters of the mechanical alloying process on composite materials, Metallurgy and New Materials Research, nr.1, 2013, ISSN 1221-5503, pg. 15-22

11. Wang, X., Ding, H., Qi, F., Liu, Q., Fan, X., & Shi, Y. (2017). Mechanism of in situ synthesis of TiC in Cu melts and its microstructures. Journal of Alloys and Compounds.

12. Wang, F., Li, Y., Wang, X., Koizumi, Y., Kenta, Y., & Chiba, A. (2016). In-situ fabrication and characterization of ultrafine structured Cu-TiC composites with high strength and high conductivity by mechanical milling. Journal of Alloys and Compounds.

13. Wang, F., Li, Y., Xie, G., Wakoh, K., Yamanaka, K., Koizumi, Y., & Chiba, A. (2016). Investigation on hot deformation behavior of nanoscale TiC-strengthened Cu alloys fabricated by mechanical milling. Materials Science and Engineering A.

14. Moraru, C.G., Șerban, C.E., Popescu, R.M., Modeling of milling kinetics in a planetary ball mill, Metalurgia International, nr.5, 2013, ISSN 1582-2214, pg. 107-110

15. Kang, S. J. L., Bordia, R., Olevsky, E., & Bouvard, D. (2012). Advances in Sintering Science and Technology II: Ceramic Transactions. Advances in Sintering Science and Technology II: Ceramic Transactions (Vol. 232).

16. German, R. (2014). Sintering: From Empirical Observations to Scientific Principles. Sintering: From Empirical Observations to Scientific Principles.

17. Upadhyaya, G. S. (2009). Sintering Fundamentals. Materials Science Forum (Vol. 624).

18. Somiya, S., & Moriyoshi, Y. (1990). Sintering Key papers. Igarss 2014.

19. Ivensen, V. (1973). Densification of Metal Powders During Sintering. Consultants Bureau 113-122. 10.1007/978-1-4757-0106-7_10

20. Goetzel, C.G. (1940), Structure and properties of copper powder compacts, J. Inst. Met. 66, 319329

21. Coble, R.L., & Gupta, T.K. (1967) Intermediate stage sintering, in: Sintering and Related Phenomena, Gordon and Breach, New York, NY, pp. 423441

22. Bordia, R., & Olevsky, E. (2009). Advances in sintering science and technology. Journal of the American Ceramic Society, 92(7), 1383.

23. Shatokha, V. (2012). Sintering – Methods and Products. InTech . ISBN 978-953-51-0371-4,

24. Castro,R., & van Benthem, K. (2013) Sintering – Mechanisms of Convention Nanodensification and Field Assisted Processes. Springer. 10.1007/978-3-642-31009-6

25. Gosselar J., and Johnson, M. (2011) Solar Thermal Energy for Industrial Uses. Environmental and Energy Study Institute, Washington DC

26. Dressler, A. (2016) Introduction to Modern Climate Change, Second Edition, Cambridge University Press, ISBN: 978-1-107-48067-4

27. Yang, Y. (2012), Yang, Y. (2012), Solar Energy as a Renewable Resource for Cooling, phd Thesis, Energy Department Politecnico di Torino
How to Cite
Mihai, M.-P. (2019). RESEARCH ON SOLAR SINTERING FOR ELECTRICAL CONTACTS. Nonconventional Technologies Review, 23(1). Retrieved from