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DEVELOPING AN OPEN SOURCE FOOT PROSTHESIS FOR 3D PRINTING
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With all the advantages of additive manufacturing, it is possible to obtain a prosthesis that can be more efficient and comfortable
than a classic one. In this case, it is possible to use more materials in making the leg prosthesis which by using soft material that can
be printed can provide a higher degree of comfort. In the development of the prosthesis were used state of the art techniques and

instruments: laser scanning, revere engineering, 3D printing TRIZ.
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1. INTRODUCTION

The Solid Ankle Cushioned Heel or SACH (Figure
1) is the simplest and cheapest prosthesis available
on the market.
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Figure 1 Solid Ankle Cushioned Heel

The foot of is a very important element of our
mobility that ensures both balance and contact with
the ground while walking. The leg prosthesis should
provide the body support in the phases of the
stepping process (Figure 2) A, B, C and D, and
operate on the principle of energy-storing-and-
return.
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Figure 2 Phase of Gait Cycle [1]

SACH-type prostheses are simple, made of foam
and wood or plastic, easy to maintain and without

any degree of freedom; they are normally
recommended for people with a lower activity level.

The single axis type of prosthesis offers a type of
rotation named tilt up and down (Figure 1 center).
This movement allows the prosthesis to sit fast on
the surface as the heel touches the ground, thus
increasing stability during travel. This type of
prosthesis is recommended for patients who move
slowly and have a problem in the knee joint. In this
type of prostheses there is a need for maintenance
operations that are somewhat more difficult
compared to SACH type.

The multi axial prostheses offer more degrees of
freedom and are designed to ensure stability and
comfort even when used on uneven surfaces or in
rapid steering (Figure 3).

Figure 3 Multi-axial feet [2]

In multi axial prostheses, the design is similar to the
one shown in the figure above, the two parts of the
prosthesis move independently, thus providing a
better balance than the SACH or single axis
prostheses. These types of prostheses are
recommended to active people and require periodic
simple maintenance and adjustment work. Dynamic
response prostheses (Figure 4) also known as
“energy storing feet” use a system similar to a spring
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that accumulates and releases energy while the
patient is moving. The spring effect obtained using
various shapes and material types provide extra
energy for the user by significantly reducing the
patient's effort while walking. Energy is
accumulated in stages A, B and C (Figure 2) and
released in stages D, E and F. This type of prosthesis
is recommended for active people and can be used
during sports activities. The active prostheses are the
most technologically advanced and incorporate
sensors, actuators and microprocessors.
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Figure 4 THRIVE - response with no extra load (upper),
response with extra load (bottom) [3]

Figure 5 Powered prosthesis [4]

The advantages of motor-powered prostheses
are: a walking sensation similar to that of the normal
foot; speed and ease in changing travel speed, easy
displacement on ramps and uneven terrain. The main
disadvantages of these systems are the need for
battery charging and its capacity, cost and weight
higher than for other types of prostheses. The SACH
type prostheses are obtained by using the plastic
injection process (Figure 6); this process as all those
that require the use of molds offer a low degree of
customization.

Figure 6 Manufacturing of SACH using injection mold

Multi-axial and dynamic or motor-powered
prostheses typically have components made of
composite materials, they are made using molds as
shown in [5]. Additive manufacturing is a process
that begins to be used in the manufacture of
prostheses and orthoses as shown in [6].

Figure 7 Manufacture of components of composite materials

[5]

In [7] the model from Figure 8 is presented and
explores the possibilities of prosthesis development
for children from developing countries - specifically
referring to the variance in sizes as the child grows.

Figure 8 3D printed SACH [7]
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The most common manufacturing methods used are:
Selective Laser Sintering (SLS) [8], Fused
Deposition Modelling (FDM) [9, 10], laser sintering
as shaping technology [11].

In Table 1 are presented the equipment and materials
of the additive manufacturing category used for
prostheses and orthotics.

From the study of bibliographic resources, it has
been found that one single prosthetic material is
usually used and another one for the support.
Equipment and materials used for foot prosthesis
manufacturing

Table 1
Equipment Materials Reference
SLA-250/40, 3D Systems Ciba-Geigy 5170, [12]
DuPont Somos 6110
SinterStataion 2000 / 2500 Duraform [13-15]
/3500 Duraform PA
Vanaguard SinterStation, Duraform Polyamide [16]
3D Systems (Nylon 12)
Z Corporation Z402-3 Plaster infiltrated with [17]
PU
DTS SinterStation2500 Duraform Nylon 11 and [18]
plusTM Nylon 12
Vanaguard SinterStation, Rilsan D80 [19, 20]
3D Systems Nylon 11 and Nylon 12
Objet500 Connex VeroWhitePlus and [21, 22]
TangoBlackPlus
TangoBlackPlus and
VeroClearTM

2. FOOT PROSTESIS DESIGN
2.1 Innovation support

The leg prosthesis development process had as its
central element the algorithm presented in Figure 9.
The TRIZ (Teoriya Resheniya lzobretatelskikh
Zadach) method, developed by the inventor and
writer Genrich Altshuller between 1946 and 1985
was successfully used in innovation design of
medical equipment [23], new product development
[24] or in development of plastic parts [25].
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Figure 9 Design algorithm

The TRIZ method was used to generate innovative
technical solutions, so CTQs were equated with the
parameters from TRIZ (Figure 10), the inventive
conflicts and inventive principles have been
determined and then generic solutions have been
sought on the basis of known prior solutions.
Generic solutions based on the principles of the
TRIZ method have been interpreted and specific
solutions have been established in the form of new
concepts.
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Figure 10 Attributing TRIZ parameters

The principles considered useful in developing the
prosthesis extracted from the TRI1Z method are:

Extraction - Extract (remove or separate) a
disturbing part or property from an object, or extract
only the necessary part or property

This recommendation has been transposed into
practice by designing a prosthesis containing a
single component (extract, remove or separate part
or property) but allowing the foot to flex during
walking.

Dynamicity - Make an object or its environment
automatically adjust for optimal performance at each
stage of operation. Divide an object into elements
which can change position relative to each other. If
an object is immovable, make it movable or
interchangeable

This recommendation has been transposed into
practice by adding parts of elastic material so that
certain parts of the prosthesis are not rigid (change
position relative to each other)

Self-service - Make the object service itself and
carry out supplementary and repair operations. Make
use of wasted material and energy.

The implementation of this recommendation has
been translated by reducing the number of moving



parts of the prosthesis in order to eliminate as far as
possible the maintenance of the prosthesis.

Copying - Use a simple and inexpensive copy
instead of an object that is complex, expensive,
fragile or inconvenient to operate. Replace an object
by its optical copy or image. A scale can be used to
reduce or enlarge the image. If visible optical copies
are used, replace them with infrared or ultraviolet
copies

Using a simple and inexpensive copy - has led to a
reduction in the total number of components, the
resultant prosthesis is made up of a single piece
made of two materials: one rigid and the other one
elastic.

2.2 Prosthesis design

The external shape of the prosthesis was obtained by
scanning and processing a passive foot prosthetic

(Figure 11).

Figure 11 Passive foot prosthetic

By using scanning techniques and reverse
engineering, the outer prosthesis shape can be
customized for each individual patient as shown in
[26].

Rubber

Figure 12 Prosthesis design

The designed prosthesis combines two materials:
one rigid PLA and the other one elastic as shown in
Figure 12. Zone 1 and 2 allow fixation of the
prosthesis in a similar way to the natural movements
of the foot (Figure 13).

Figure 13 Flexing the prosthesis

Zone 3 is an area that takes vertical shocks and
whose thickness can vary depending on the weight
of the patient and is a customizable element of the
prosthesis.

The three areas printed with elastic material are
connected by an elastic core whose shape has been
optimized in order to increase the adhesion between
the two materials (Figure 14).

Figure 14 Connecting the flexible areas

Obtaining the prosthesis is possible using a printing
equipment with at least two print heads, one for each
material. The printing materials used are:

e PLA : 1.7mm, material density 1,24 gl/cm®,
tensile strength 110 MPa,

e Rubber: 1.7mm, material density 1,21 g/cm3,
tensile strength 40 MPa,

e A third material such as PVA can be used for the
support which reduces manufacturing time by
simplifying the removal of the support.

The printer used for prototyping is Leapfrog Creater

XL (Figure 15).

Figure 15 3D printing of prosthesis

In Figure 16 shows the printed prosthesis;
represented in white/orange is the flexible material,



this material represents about 30% of the total
volume of the prosthesis.

Figure 16 Printed prosthesis

3. CONCLUSION

The paper presents the first phase of the
development of a foot prosthesis. The innovation
brought about by this prosthesis model consists in
the use of two different materials, one solid and the
other elastic, which were added in layers by means
of using additive manufacturing equipment. The
prosthesis will enter the test and validation phase
when endurance and fatigue tests will be performed
as shown in [27]. Also tests will be conducted in
order to determine gait patterns on various terrains,
(balance, on flat, uneven, sloped), stairs and walking
speed [28].

At this stage, a series of optimizations of the shape
and proportion of the solid and the elastic material
have been made, and other forms and material will
be tested in the future. At this moment using the
design shown in Figure 12 the prosthesis can be
printed depending on printer performances in a time
frame between 10 and 22 hours.
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