CARBON-BASED MATERIALS FOR HEALTHCARE MICRO-DEVICES

  • Roxana Marinescu National Institute for Research and Development in Microtechnologies, IMT-Bucharest
  • Bogdan Catalin Serban National Institute for Research and Development in Microtechnologies, IMT-Bucharest
  • Niculae Dumbravescu National Institute for Research and Development in Microtechnologies, IMT-Bucharest
  • Viorel Avramescu National Institute for Research and Development in Microtechnologies, IMT-Bucharest
  • Cornel Cobianu National Institute for Research and Development in Microtechnologies, IMT-Bucharest
  • Octavian Buiu National Institute for Research and Development in Microtechnologies, IMT-Bucharest
Keywords: Carbon-based materials, micro devices, healthcare

Abstract

Microtechnology is one of the key technologies supporting the behaviour for healthier life, including disease prevention and faster healing. An amazing demand for autonomous micro-devices in “healthcare” field is raising the need for miniaturized power sources. These micro-devices need to be made of durable, hard but flexible materials and also easy to use materials. For all these demands, a research on carbon-based materials was made. So, it was found that combinations of carbon-based materials can be made, because this need means more power, more strength and more rapid time of response. Graphene, Carbon Nanohorns (CNHs) and Carbon Nanotubes (CNTs) were the three carbon-based materials studied in this research and their properties of being adaptable to micro-devices for healthcare.  

References

1. Buiu, O., Tache, G., Materiale si dispozitive inteligente; o noua perspectiva pentru Medicina de Reabilitare, Congresul National de Reabilitare Medicala, (2017).
2. Buiu, O., Serban, B.C., Ionescu, O., Internet of Things and the Human Body, J Nanomed Res 2017, 5(2): 00113
3. Olson, S., The role of human factors in home health care, The National Academies Press, (2010).
4. Bellouard, Y., „Microrobotics, Microdevices Based on Shape Memory Alloys”, In M. Schwartz (Ed.), Encyclopedia of Smart Materials London: Wiley-Interscience.
5. BioMEMS, a technology & market report from Yole Développement (2013).
6. Mallozzi, J., Changing medicine with microtechnology, Research and Development online (2005)
7. Wang, J., Glucose Biosensors: 40 Years of Advances and Challenges, Electroanalysis, Vol. 13(12), pp 983-988, (2001).
8. Wang, J., Electrochemical Glucose Biosensors, Chem Rev., 108 (2), pp 814–825, (2008).
9. Stamatin, I., Nanomateriale aplicatii in biosenzori, surse de energie, medicina, biologie: elemente de nanotehnologie, Ed. Universitatea din Bucuresti, (2008).
10. The Maturing Nanotechnology Market: Products and Applications, NAN031G, A BCC Research Nanotechnology Report. (2016).
11. Geim, A. K., Graphene: Status and Prospects, Science, Vol. 324 (5934), pp.1530-1534, (2009).
12. Barbot A., Decanini D., Hwang G., On-chip Microfluidic Multimodal Swimmer toward 3D Navigation, Scientific Reports, (2016).
13. http://www.basilleaftech.com/dxter/ , accesed at: 20.07.2019.
14. Qiu, F., Bradley, J.N., Magnetic Helical Micro- and Nanorobots: Toward Their Biomedical Applications, Engineering (2015), 1(1),pp.21–26
15. Chalupniak, A., Morales-Narvaez, E., Merkoci, A., Micro and nanomotors in diagnostics, Advanced drug delivery reviews,Vol. 95, pp 104-116, (2015).
16. Bai, W., Kuang, T., Chitrakar, C., Yang, R., Li, S., Zhu, D., Chang, L., Biosensors and Bioelectronic, (2018).
17. Zhang, BT., Zheng, X., Li, HF., Lin, JM., Application of carbon-based nanomaterials in sample preparation: A review, Analytica Chimica Acta, (2013).
18. Čiplys, D., Rimeika, R., Chivukula, V., Shur, M. S., Kim, J. H., & Xu, J. M. (2010). Surface acoustic waves in graphene structures: response to ambient humidity. Proceed. of the 2010 IEEE Sensors, pp. 785 - 788.
19. Geim, AK., Novoselov, K.S., The rise of graphene, Nature Materials, (2007)
20. Salvo, P., Melai, B., Calisi, N., Paoletti, C., Bellagambi, F., Kirchhain, A., Trivella, M.G., Fuoco, R., Di Francesco, F., Graphene-based devices for measuring pH, Sensors and Actuators B: Chemical, 256, 976-991, Elsevier, (2017)
21. Stihi, V., Microtehnologii utilizate in sistemele de supravghere, Revista Intelligence, (2009).
22. Yue, Z., Ye, X., Liu, S., Zhu, Y., Jiang, H., Wan, Z., Lin, Y., Jia, C., Towards ultra-wide operation range and high sensitivity: Graphene film-based pressure sensors for fingertips, Biosensors & Bioelectronics, (2019).
23. Pippa, N., et al. Carbon nanohorn/liposome systems: Preformulation, design and in vitro toxicity studies, Materials Sci. & Eng.: C, (2019).
24. S. Iijima et al. (1999), Nano-aggregates of single-walled graphitic carbon nano-horns, Chemical Physics Letters, 309 3-4, 165 - 170.
25. Fan, J. Yudasaka, M. Miyawaki, J. Ajima, K. Murata, K. Iijima, S. (2006), Control of Hole Opening in Single-Wall Carbon Nanotubes and Single-Wall Carbon Nanohorns Using Oxygen, J. Phys. Chem. B, 110, 1587 – 1591.
26. Yuge, R. Ichihashi, T. Shimakawa, Y. Kubo, Y. Yudasaka, M. Iijima, S. (2004), Preferential Deposition of Pt Nanoparticles Inside Single-Walled Carbon Nanohorns,Adv. Mater.,16, 1420.
27. Zhang, M. Yudasaka, M. Ajima, K. Miyawaki, J. Iijima, S. (2007), Light – Assisted Oxidation of Single-Wall Carbon Nanohorns for Abundant Creation of Oxygenated Groups That Enable Chemical Modifications with Proteins to Enhance Biocompatibility, ACS Nano, 1, 265.
28. Karandikar, S., Mirani, A., Waybhase, V., Patravale, V.B., Nanostructures for Oral Medicine, Micro and Nano Technologies, pp 263-293, Nanovaccines for oral delivery- formulation strategies and challenges, (2017).
29. Shen, H., Liu, T., Qin, D., Bo X., Wang, L., Wang, F., Yuan, Q., Wagberg, T., Hu, G., Zhou, M., Wearable Carbon Nanotube Devices for Sensing, 6th International Conf. on Adv. in Experimental Structural Engineering 11th International Workshop on Advanced Smart Materials and Smart Structures Technology August 1-2, University of Illinois, Urbana-Champaign, United States, (2015).
30. Salvo, P., Pingitore, A., Barbini, A., Di Francesco, F., A wearable sweat rate sensor to monitor the athletes’ performance during training, Elsevier Science & Sports 33, pp 51-58, (2018).
Published
2019-12-31
How to Cite
Marinescu, R., Serban, B., Dumbravescu, N., Avramescu, V., Cobianu, C., & Buiu, O. (2019). CARBON-BASED MATERIALS FOR HEALTHCARE MICRO-DEVICES. Nonconventional Technologies Review, 23(4). Retrieved from http://revtn.ro/index.php/revtn/article/view/241