RESEARCH ON SUBMERGED FRICTION STIR PROCESSING OF EN AW 6082 ALUMINUM ALLOY

  • Lia Nicoleta Botila National R&D Institute for Welding and Material Testing - ISIM Timisoara
  • Ion Aurel Perianu National R&D Institute for Welding and Material Testing - ISIM Timisoara
  • Iuliana Duma National R&D Institute for Welding and Material Testing - ISIM Timisoara
  • Gabriela Victoria Mnerie National R&D Institute for Welding and Material Testing - ISIM Timisoara
Keywords: submerged friction stir processing, EN AW 6082 aluminum alloy, experiments, structural analysis, mechanical properties, SFSP

Abstract

Submerged friction stir processing (SFSP) is a variant of processing the surfaces of metallic materials that uses the liquid medium to ensure a process temperature that does not thermally overload the materials to be processed or the processing tool. SFSP processing aims at local modification of the properties of the materials to be processed. The paper presents results of experimental research carried out at ISIM Timisoara on submerged friction stir processing (SFSP) of the 5mm thick EN AW 6082 aluminum alloy. In the SFSP processing experiments, multiple processing rows were performed with their partial overlap. The evaluation of the processed material consisted of visual examination and with penetrating radiation, structural analysis, mechanical tensile tests and bending tests, positive results the results being achieved.

References

1. Singh, H., Kumar, P. and Singh, B., Effect of Under Surface Cooling on Tensile Strength of Friction Stir Processed Aluminum Alloy 6082, AJASE, Vol. 5, No.1, pp. 40-44, (2016). https://doi.org/10.51983/ajeat-2016.5.1.767;
2. Maurya, M., Maurya, A. and Kumar, S., Variants of friction stir based processes: review on process fundamentals, material attributes and mechanical properties, Materials Testing, Vol. 66, No. 2, pp. 271-287, (2024), https://doi.org/10.1515/mt-2023-0196;
3. Arezoudar, A.F. and Hosseini, A., A new method for localization of the residual stress distribution and enhancement of wear resistance through underwater friction stir processing with stationary shoulder, Int. J. Adv. Manuf. Technol., Vol.133, pp. 2515-2531, (2024);
https://doi.org/10.1007/s00170-024-13831-1;
4. Chunling, B., Beibei, W., Chao, Y., Qizhong, Z., Yuelu, R., Peng, X. et. al., Effect of multipass submerged friction stir processing on the microstructure, mechanical properties and corrosion resistance of 5383Al alloy, J. Mater. Process. Technol. 118416, (2024), https://doi.org/10.1016/j.jmatprotec.2024.118416;
5. Iwaszko, J., New Trends in Friction Stir Processing: Rapid Cooling - a Review, Trans. Indian Inst. Met., Vol. 75, pp. 1681-1693, (2022) http://dx.doi.org/10.1007/s12666-022-02552-2;
Heidarzadeh, A., Mironov, S., Kaibyshev, R. et al., Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution, Prog. Mater. Sci., Vol. 117, 100752, (2021), https://doi.org/10.1016/j.pmatsci.2020.100752;
6. Li, K., Liu, X. and Zhao, Y., Research status and prospect of friction stir processing technology, Coatings, Vol. 9, pp. 129, (2019); doi:10.3390/coatings9020129;
7. Patel, M.S., Immanuel, R.J., Rahaman, A. et. al., Critical Review of Advanced Cooling Strategies in Friction Stir Processing for Microstructural Control, Crystals, Vol.14, pp. 655, (2024). https://doi.org/10.3390/cryst14070655;
8. Kumar, R.A., Kumar, R.G.A., Ahamed K.A., Alstyn, B.D., Vignesh, V., Review of friction stir processing of aluminium alloys. Mater. Today Proc., Vol. 16, pp. 1048-1054, (2019), https://doi.org/10.1016/j.matpr.2019.05.194;
9. Patel, V., Li, W., Vairis, A. et al., Recent Development in Friction Stir Processing as a Solid-State Grain Refinement Technique: Microstructural Evolution and Property Enhancement, Crit. Rev. Solid State Mater. Sci. Vol. 44, pp. 378-426, (2019), https://doi.org/10.1080/10408436.2018.1490251;
10. A. T. Silvesti, G. Parodo, F. Napolitano et al., Cold formability of friction stir processed 5754H111 and 6082-T6 aluminum alloys: an experimental and numerical study, Int. J. Adv. Manuf. Tech. Vol. 131, pp. 3851-3869, (2024), https://doi.org/10.1007/s00170-024-13218-2;
El-Sayed, M.M. et al., Welding and processing of metallic materials by using friction stir technique: A review, J. Adv. Join. Process., Vol.3, 100059, (2021), https://doi.org/10.1016/j.jajp.2021.100059.
11. Rathinasuriyan, C. Submerged Friction Stir Welding and Processing: Insights of Other Researchers, Int. J. Appl. Eng. Res., Vol.10, No. 8, pp. 6530-6536, (2015);
12. Srivastava, A. K. et al., 20th Century Uninterrupted Growth in Friction Stir Processing of Lightweight Composites and Alloys, Mater. Chem. Phys., Vol. 266, 124572, (2021), https://doi.org/10.1016/j.matchemphys.2021.124572;
13. Ma, Z.Y., Feng A. H., D. L. Chen and J. Shen, Recent Advances in Friction Stir Welding/ Processing of Aluminum Alloys: Microstructural Evolution and Mechanical Properties, Crit. Rev. Solid State Mater. Sci. (2018), 43, 4, https://doi.org/10.1080/10408436.2017.1358145.
Silvestri, A.T., El Hassanin, A., de Alteriis, G., Astarita, A., Energy Consumption and Tool Condition in Friction Stir processing of Aluminum Alloys, Int. J. Precis. Eng. Manuf. - Green Technol. (2024), https://doi.org/10.1007/s40684-024-00633-9.
Published
2025-09-30
How to Cite
Botila, L., Perianu, I., Duma, I., & Mnerie, G. (2025). RESEARCH ON SUBMERGED FRICTION STIR PROCESSING OF EN AW 6082 ALUMINUM ALLOY. Nonconventional Technologies Review, 29(3). Retrieved from http://revtn.ro/index.php/revtn/article/view/541