REVIEW OF WIRE ELECTRICAL DISCHARGE MACHINING OF THE ALUMINUM EXTRUSION DIE
Keywords:
nonconventional technology, Electrical discharge machining, extrusion, aluminum, die
Abstract
One of the most studied nonconventional technologies is the Electrical Discharge Machining. There is a lot of research in this area, due to the fact that the use of electric erosion machines is constantly increasing. This scientific work is a review of unconventional erosion processing processes. The importance of EDM processing of aluminum in the aerospace industry was emphasized, starting from the way of its preparation by extrusion with the help of molds. In the last part of the paper are presented the own views on the analyzed topic.
References
1. Singh, A., Grover, N. K., Sharma, R., Recent Advancement in Electric Discharge Machining, A Review, International Journal of Modern Engineering Research (IJMER), Vol.2, Issue.5, pp. 3815-3821 (2012).
2. Ganguly, S., A detailed review of the current research trends in electrical discharge machining (EDM), Proceedings of the National Conference on Trends and Advances in Mechanical Engineering, YMCA University of Science & Technology, Faridabad, Haryana, (2012).
3. Gnanavel, C., Saravanan, R., Chandrasekaran, M., Pugazhenthi, R., Restructured review on Electrical Discharge Machining – A state of the art, International Conference on Emerging Trends in Engineering Research, IOP Conf. Series: Materials Science and Engineering 183, (2017).
4. Iqbal, A., Zhang, H., Kong , L., Hussain, G., A rule-based system for trade-off among energy consumption, tool life, and productivity in machining process, J Intell Manuf, 26, pp. 1217–1232, (2015).
5. Amza, Gh. ş.a. – Tratat de tehnologia materialelor (vol II), Editura AcademieiRomane, Bucureşti, (2002).
6. Gavrilas, I., Marinescu, N.I., Prelucrări neconvenţionale în construcţia de maşini, Editura Tehnică, Bucureşti, (1991).
7. Nanu, A., Tehnologia materialelor, Editura Didactică şi Pedagogică, Bucureşti, (1977).
8. Ho K.H, Newman S.T., State of the art electrical discharge machining (EDM) [J]. International Journal of Machine Tools and Manufacture, 43(13): 1287−1300, (2003).
9. Abrate, S, Walton, D., Machining of composite materials, Part II: Non-traditional methods, J. Composites Manufacturing, 3(2): 85−94, (1992).
10. Pramanik, A., Developments in the non-traditional machining of particle reinforced metal matrix composites, International Journal of Machine Tools and Manufacture, 86: 44−61, (2014).
11. Sarkar, S, Mitra, S, Bhattacharyya, B., Parametric analysis and optimization of wire electrical discharge machining of γ-titanium aluminide alloy. Journal of Materials Processing Technology, 159(3): 286−294, (2005).
12. Spedding, T.A., Wang, Z.Q., Study on modeling of wire EDM process, Journal of Materials Processing Technology, 69(1−3): 18−28, (1997).
13. Liao, Y.S, Huang, J.T, Su, H.C., A study on the machining-parameters optimization of wire electrical discharge machining, Journal of Materials Processing Technology, 71(3): 487−493, (1997).
14. Selvakumar, G., Sornalatha, G., Sarkar, S., Mitra, S., Experimental investigation and multi-objective optimization of wire electrical discharge machining (WEDM) of 5083 aluminum alloy, Transactions of Nonferrous Metals Society of China, 24(2): 373−379, (2014).
15. Dave, H.K., Mathai, V.J., Desai, K.P., Raval, H.K., Studies on quality of microholes generated on Al 1100 using micro-electrodischarge machining process, The International Journal of Advanced Manufacturing Technology, 76(1−4): 127−140, (2013).
16. Pramanik, A., Basak, A.K., Islam, M.N., Effect of reinforced particle size on wire EDM of MMCs, International Journal of Machining and Machinability of Materials, 17(2): 139−149, (2015).
17. Pramanik, A., Basak, A.K., Islam, M.N., Littlefair, G., Electrical discharge machining of 6061 aluminium alloy, Trans. Nonferrous Met. Soc., China 25 2866−2874, (2015).
18. Pop, Gh,I., Țîțu, A.M., Cupșan, V.C., Nonconventional manufacturing work preparation for wire EDM machining, Nonconventional Technologies Review 2018 Romanian Association of Nonconventional Technologies Romania, October (2018).
19. Aluminum Statistical Review for 1999 (Washington, D.C.: The Aluminum Association), p. 24, (2000).
20. Ashton, R.F., “The Metallurgy of Press Heat Treatable Al-Zn-Mg Extrusion Alloys” Paper No. 12, presented at the Int. Extrusion Technol. Seminar, New Orleans, March 3–5, (1969).
21. Butdee, S., Noomtong, C., Tichkiewitch, S., A Process Planning System with Feature based Neural Network Search Strategy for Aluminum Extrusion Die Manufacturing, AIJSTPME, Vol. 2(1), pp.137-157, (2009).
22. Suthep, Butdee, Adaptive Aluminum Extrusion Die Design Using Case-Based Reasoning and Artificial Neural Networks, Advanced Materials Research Online: 2011-11-22, ISSN: 1662-8985, Vols. 383-390, pp 6747-6754, doi:10.4028/www.scientific.net/AMR.383-390.6747, Trans Tech Publications, Switzerland, (2012).
23. http://www.supequipment.com/products/fanuc-edm/, retrieved in August 2019.
24. Takayama, Y., Makino, Y., Niu, Y., Uchida, H., The latest technology of Wire-cut EDM, Procedia CIRP 42 623 – 626, 18th CIRP Conference on Electro Physical and Chemical Machining (ISEM XVIII), doi: 10.1016/j.procir.2016.02.259, (2016).
2. Ganguly, S., A detailed review of the current research trends in electrical discharge machining (EDM), Proceedings of the National Conference on Trends and Advances in Mechanical Engineering, YMCA University of Science & Technology, Faridabad, Haryana, (2012).
3. Gnanavel, C., Saravanan, R., Chandrasekaran, M., Pugazhenthi, R., Restructured review on Electrical Discharge Machining – A state of the art, International Conference on Emerging Trends in Engineering Research, IOP Conf. Series: Materials Science and Engineering 183, (2017).
4. Iqbal, A., Zhang, H., Kong , L., Hussain, G., A rule-based system for trade-off among energy consumption, tool life, and productivity in machining process, J Intell Manuf, 26, pp. 1217–1232, (2015).
5. Amza, Gh. ş.a. – Tratat de tehnologia materialelor (vol II), Editura AcademieiRomane, Bucureşti, (2002).
6. Gavrilas, I., Marinescu, N.I., Prelucrări neconvenţionale în construcţia de maşini, Editura Tehnică, Bucureşti, (1991).
7. Nanu, A., Tehnologia materialelor, Editura Didactică şi Pedagogică, Bucureşti, (1977).
8. Ho K.H, Newman S.T., State of the art electrical discharge machining (EDM) [J]. International Journal of Machine Tools and Manufacture, 43(13): 1287−1300, (2003).
9. Abrate, S, Walton, D., Machining of composite materials, Part II: Non-traditional methods, J. Composites Manufacturing, 3(2): 85−94, (1992).
10. Pramanik, A., Developments in the non-traditional machining of particle reinforced metal matrix composites, International Journal of Machine Tools and Manufacture, 86: 44−61, (2014).
11. Sarkar, S, Mitra, S, Bhattacharyya, B., Parametric analysis and optimization of wire electrical discharge machining of γ-titanium aluminide alloy. Journal of Materials Processing Technology, 159(3): 286−294, (2005).
12. Spedding, T.A., Wang, Z.Q., Study on modeling of wire EDM process, Journal of Materials Processing Technology, 69(1−3): 18−28, (1997).
13. Liao, Y.S, Huang, J.T, Su, H.C., A study on the machining-parameters optimization of wire electrical discharge machining, Journal of Materials Processing Technology, 71(3): 487−493, (1997).
14. Selvakumar, G., Sornalatha, G., Sarkar, S., Mitra, S., Experimental investigation and multi-objective optimization of wire electrical discharge machining (WEDM) of 5083 aluminum alloy, Transactions of Nonferrous Metals Society of China, 24(2): 373−379, (2014).
15. Dave, H.K., Mathai, V.J., Desai, K.P., Raval, H.K., Studies on quality of microholes generated on Al 1100 using micro-electrodischarge machining process, The International Journal of Advanced Manufacturing Technology, 76(1−4): 127−140, (2013).
16. Pramanik, A., Basak, A.K., Islam, M.N., Effect of reinforced particle size on wire EDM of MMCs, International Journal of Machining and Machinability of Materials, 17(2): 139−149, (2015).
17. Pramanik, A., Basak, A.K., Islam, M.N., Littlefair, G., Electrical discharge machining of 6061 aluminium alloy, Trans. Nonferrous Met. Soc., China 25 2866−2874, (2015).
18. Pop, Gh,I., Țîțu, A.M., Cupșan, V.C., Nonconventional manufacturing work preparation for wire EDM machining, Nonconventional Technologies Review 2018 Romanian Association of Nonconventional Technologies Romania, October (2018).
19. Aluminum Statistical Review for 1999 (Washington, D.C.: The Aluminum Association), p. 24, (2000).
20. Ashton, R.F., “The Metallurgy of Press Heat Treatable Al-Zn-Mg Extrusion Alloys” Paper No. 12, presented at the Int. Extrusion Technol. Seminar, New Orleans, March 3–5, (1969).
21. Butdee, S., Noomtong, C., Tichkiewitch, S., A Process Planning System with Feature based Neural Network Search Strategy for Aluminum Extrusion Die Manufacturing, AIJSTPME, Vol. 2(1), pp.137-157, (2009).
22. Suthep, Butdee, Adaptive Aluminum Extrusion Die Design Using Case-Based Reasoning and Artificial Neural Networks, Advanced Materials Research Online: 2011-11-22, ISSN: 1662-8985, Vols. 383-390, pp 6747-6754, doi:10.4028/www.scientific.net/AMR.383-390.6747, Trans Tech Publications, Switzerland, (2012).
23. http://www.supequipment.com/products/fanuc-edm/, retrieved in August 2019.
24. Takayama, Y., Makino, Y., Niu, Y., Uchida, H., The latest technology of Wire-cut EDM, Procedia CIRP 42 623 – 626, 18th CIRP Conference on Electro Physical and Chemical Machining (ISEM XVIII), doi: 10.1016/j.procir.2016.02.259, (2016).
Published
2019-09-30
How to Cite
Pop, G., Dragomir, M., Titu, A., & Cupsan, V. (2019). REVIEW OF WIRE ELECTRICAL DISCHARGE MACHINING OF THE ALUMINUM EXTRUSION DIE. Nonconventional Technologies Review, 23(3). Retrieved from http://revtn.ro/index.php/revtn/article/view/253
Section
Articles