CONSIDERATIONS REGARDING DEFECTS THAT MAY OCCUR DURING FSP/SFSP PROCESSING OF ALUMINUM ALLOYS
Abstract
The paper provides a comprehensive analysis of the defect phenomena associated with friction stir processing (FSP) and submerged friction stir processing (SFSP) of aluminium alloys. The investigation systematically addresses the origins, typologies, and implications of both surface and internal defects observed in rolled and cast aluminium alloys subjected to these advanced solid-state processing techniques. Key factors influencing defect formation, including tool geometry, process parameters, intrinsic material characteristics, and environmental conditions, are critically examined. The review further delineates material-specific responses to FSP/SFSP and highlights the challenges posed by initial microstructural inhomogeneities and compositional variations. Strategies for defect prevention are discussed, emphasizing the importance of optimized tool design, precise process control, and the integration of post-processing treatments. The findings underscore the necessity of a multidisciplinary approach - encompassing rigorous material pre-characterization, controlled processing environments, and adaptive monitoring systems - to ensure structural integrity and enhanced mechanical performance of processed components. This work advances the understanding of defect mechanisms in FSP/SFSP and offers evidence-based guidelines for the production of high-quality, high-performance aluminium alloy components suitable for demanding engineering applications.
References
2. Merah N., Azem M.A., Abubaker H.M., Al-Babour F., Albinmousa J., Sorour A.A. Testing and Analysis of Mechanical, and Corrosion Properties of 2024 Aluminum Alloy Using Friction Stir Processing. Materials, Vol. 14, Issue 17, Article 5023, https://doi.org/10.3390/ma14175023, (2021).
3. Liew K.W., Chung Y.Z., Teo G.S., Kok C.K. Effect of Tool Pin Geometry on the Microhardness and Surface Roughness of Friction Stir Processed Recycled AA 6063. Metals 2021, Vol 11, Issue 11, Article 1695; https://doi.org/10.3390/met11111695, (2021).
4. Xinze D., Mengran Z., Yingxin .G., Yuxiang H., Zhiguo L., Gaoqiang C., Qingyu S. Recent Advances in Additive Friction Stir Deposition: A Critical Review. Materials (Basel), 25;17(21):5205. https://doi.org/10.3390/ma17215205, (2024).
5. Soori M. Mechanical Behavior of FSP process in the Aluminum Alloy 6061-5052 and 7075. HAL open science, Id: hal-03744117, https://hal.science/hal-03744117v1, (2022).
6. Besalic V.C., Boțilă L.N., Dobrin E. Consideration regarding corrosion behavior of aluminum alloy processed by Friction stir processing (FSP) or submerged friction stir processing (SFSP). Nonconventional Technologies Review, Vol. 28, no. 3. www.revtn.ro/index.php/revtn/article/view/472, (2024).
7. Sipokazi M, Velaphi M. The Influence of Multiple Pass Submerged Friction Stir Processing on the Microstructure and Mechanical Properties of the FSWed AA6082-AA8011 Joints. Metals, Vol 10, Issue 11, Article 1429; https://doi.org/10.3390/met10111429, (2020).
8. Hofmann D.C., Vecchio K.S. Submerged friction stir processing (SFSP): An improved method for creating ultra-fine-grained bulk materials. Materials Science and Engineering A, Vol. 402, Issue 1, pp. 234-241. https://doi.org/10.1016/j.msea.2005.04.032, (2005).
9. Sandeep J., Mahesh P., Jayaprakash M., Sumanta S. Influence of Friction Stir Processing on Novel Designed Aluminium-Based Alloy to Enhance Strength and Ductility. Arabian Journal for Science and Engineering, https://doi.org/10.1007/s13369-023-08063-6, (2023).
10. Zainelabdeen I.H., Al-Badour F.A. Adesina A.Y., Suleiman R., Ghaith F.A. Friction stir surface processing of 6061 aluminum alloy for superior corrosion resistance and enhanced microhardness. International Journal of Lightweight Materials and Manufacture 6, 129-139, (2023).
11. Periasamy S.R., Ramalingam V.V., Vijayakumar A., Senthilkumaran H.H, Sajja V., Ramasamy P, S.R.K.P. Sureshkumar. Influence of Friction Stir Processing Parameters on the Mechanical and Corrosion Properties of Al-Cu-Li Alloy. Iranian Journal of Materials Science and Engineering, Vol. 20, Number 2, DOI: 10.22068/ijmse.2670. (2023).
12. Sîrbu L.I., Boțilă L.N., Mnerie G.V. Study on increasing the corrosion resistance of aluminum alloys by FSP/SFSP processing. Nonconventional Technologies Review, Vol. 28, no. 4. https://www.revtn.ro/index.php/revtn/article/view/495/443, (2024).
13. Diecasting-Mould.com. Porosity In Aluminum Alloy Die Castings – What Causes Porosity In Aluminum Casting And How To Reduce Them? https://www.diecasting-mould.com/news/porosity-in-aluminum-alloy-die-castings-what-causes-porosity-in-aluminum-casting-and-how-to-reduce-them, (2020).
14. Veli Y., Petre M., Morega A.M. Improving the efficiency of the stretching process of aluminum alloy plates. U.P.B. Sci. Bull., Series B, Vol. 85, Iss. 2, https://www.scientificbulletin.upb.ro/rev_docs_arhiva/fullf56_579421.pdf, (2023).
15. Peng Y., Xie Z., Su C., Zhong Y., Tao Z., Zhuang D., Zeng J., Tang H., Xu Z. Inhomogeneous Microstructure Evolution of 6061 Aluminum Alloyat High Rotating Speed Submerged Friction Stir Processing. Materials 16(2), 579; https://doi.org/10.3390/ma16020579, (2023).
16. Constantin V.S., Botila L.N., Herci R.R. Innovative techniques for joining and processing of some aluminum alloys used in the aircraft industry. INCAS Bulletin 16(4):3-9, DOI:10.13111/2066-8201.2024.16.4.1, https://bulletin.incas.ro/files/constantin_botila_herci__vol_16_iss_4.pdf, (2024).
17. Keerthana B.V.S, Satyanarayana M.V.N.V, Venkateswara Reddy K. Shankar M.N.S. Effect of post-process and in-process cooling on wide-area stir zone processed via friction stir processing with pin overlapping. Eng. Res. Express 5, 025060, https://doi.org/10.1088/2631-8695/acdb33. (2023).
18. Rao A.G., Katkar V.A., Gunasekaran G., Deshmukh V.P., Prabhu N., Kashyap B.P. Effect of multipass friction stir processing on corrosion resistance of hypereutectic Al-30Si alloy. Corrosion Science, 83, 198-208. https://doi.org/10.1016/j.corsci.2014.02.013 (2014).
19. Navaser, M., & Atapour, M. Effect of Friction Stir Processing on Pitting Corrosion and Intergranular Attack of 7075 Aluminum Alloy. Journal of Materials Science & Technology, 33(2), 155–165. https://doi.org/10.1016/j.jmst.2016.07.008 (2017).
20. Kumar, A., Sharma, S.K., Pal, K. et al. Effect of Process Parameters on Microstructural Evolution, Mechanical Properties and Corrosion Behavior of Friction Stir Processed Al 7075 Alloy. J. of Materi Eng and Perform 26, 1122–1134. https://doi.org/10.1007/s11665-017-2572-3. (2017).
21. D’Urso, G., Giardini, C., Lorenzi, S., Cabrini, M., & Pastore, T. The Effects of Process Parameters on Mechanical Properties and Corrosion Behavior in Friction Stir Welding of Aluminum Alloys. Procedia Engineering, 183, 270–276, https://doi.org/10.1016/j.proeng.2017.04.038. (2017).
22. Vignesh, R. V., & Padmanaban, R. Intergranular corrosion susceptibility of friction stir processed aluminium alloy 5083. Materials Today: Proceedings, 5(8), 16443–16452. https://doi.org/10.1016/j.matpr.2018.05.143. (2018).
23. Esmaily, M., Mortazavi, N., Osikowicz, W., Hindsefelt, H., Svensson, J. E., Halvarsson, M., Johansson, L. G. Influence of Multi-Pass Friction Stir Processing on the Corrosion Behavior of an Al-Mg-Si Alloy. Journal of The Electrochemical Society, 163(3), C124–C130. DOI 10.1149/2.1091603jes. (2016).
24. Xu Y., Ke L., Ouyang S., Mao Y., Niu P. Precipitation behavior of intermetallic compounds and their effect on mechanical properties of thick plate friction stir welded Al/Mg joint. Journal of Manufacturing Processes, volume 64, pp 1059-1069, https://doi.org/10.1016/j.jmapro.2020.12.068. (2021).
25. Fonda R.W., Knipling K.E. Texture development in friction stir welds. Science and Technology of Welding and Joining, Volume 16, Issue 4, https://doi.org/10.1179/1362171811Y.0000000010, (2011).
26. Mishra R.S., Ma Z.Y. Friction stir welding and processing. Materials Science and Engineering: R: Reports, Volume 50, Issues 1-2, pp. 1-78, https://doi.org/10.1016/j.mser.2005.07.001, (2005).
27. Dhamodaran S., Senthil Kumar V.S., Kuppusamy R. Testing and Analysis of Mechanical and Corrosion Properties of 2024 Aluminum Alloy Using Friction Stir Processing. ASME 2023 International Mechanical Engineering Congress and Exposition, DOI: 10.1115/IMECE2023-111487, (2023).
28. Kumar A., Kumar V. Analysis of Heat Input and its Effects on Microstructure Development and Mechanical Properties of Friction Stir-Processed AA7075 Alloy. JOM, Volume 76, pp 473-485, https://doi.org/10.1007/s11837-023-06250-2, (2024).
29. Rao A.G., Katkar V.A., Gunasekaran G., Deshmukh V.P., Prabhu N., Kashyap B.P. Effect of multipass friction stir processing on corrosion resistance of hypereutectic Al-0Si alloy. Corrosion Science, Volume 83, pp. 198-208, https://doi.org/10.1016/j.corsci.2014.02.013, (2014).
30. PN23.37.01.02, Cercetări privind modificarea proprietăţilor materialelor metalice utilizând metoda ecologică şi inovativă de procesare prin frecare cu element activ rotitor în mediu lichid (în cadrul Laboratorului de prelucrări prin frecare cu element activ rotitor). https://www.isim.ro/ro/cercetare-dezvoltare/programul-nucleu/programul-nucleu-pn-23-37-2023-2026/pn23-37-01-02.
31. Keerthana B.V.S., Satyanarayana M.V.N.V., Shankar M.N.S. Effect of Cooling-Assisted Friction Stir Processing on Corrosion Behavior of AA5083 Alloy. Journal Inst. Eng. India Ser. D 105, pp. 191-200, https://doi.org/10.1007/s40033-023-00470-1, (2024).