NONCONVENTIONAL TECHNIQUE OF SINTERING/ FOAMING THE GLASS WASTE USING A LIQUID CARBONIC FOAMING AGENT

  • Marius Florin Dragoescu Daily Sourcing & Research SRL Bucharest
  • Lucian Paunescu Daily Sourcing & Research SRL Bucharest
  • Sorin Mircea Axinte Daily Sourcing & Research SRL Bucharest
Keywords: microwave, glass foam, glycerol, “water glass”, compressive strength

Abstract

The paper presents experimental results of the manufacture by a microwave heating technique of a fine porosity lightweight glass foam with high compression strength (up to 5.8 MPa) using a liquid carbonic foaming agent (glycerol) associated with "water glass" and water. The advantage of using the microwave irradiation was evidenced by the very low specific energy consumption (0.81-0.88 kWh/ kg) at the level of the lowest consumption obtained in industrial production by conventional techniques of similar products. Considering that a high power microwave equipment (industrial type) could have a higher energy efficiency (up to 25%) compared to the experimental oven, the superiority of the tested nonconventional method is theoretically obvious.

References

1. Scarinci, G., Brusatin, G., Bernardo, E., Cellular Ceramics: Structure, Manufacturing, Properties and Applications, Scheffler M., Colombo, P. (eds.), Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany, pp. 158-176, (2005).
2. Wu, J. R., Rawlings, R. D., Lee, P. D., Kershaw, M. J., Boccaccini, A. R., Glass-ceramic foams from coal ash and waste glass: production and characterization, Advances in Applied Ceramics, Vol. 501, No. 1, pp. 32-39, (2006).
3. Rawlings, R. D., Wu, J. R., Boccaccini, A. R., Glass-ceramics: Their production from wastes. A review, Journal of Materials Science, Vol. 41, No. 3, pp. 733-761, (2006).
4. Petersen, R. R., Kőning, J., Smedskjaer, M. M., Yue, Y., Glass Technology, Vol. 55, No. 1, February (2014). https://www.researchgate.net/publication/263524095_Foaming_of_CRT_panel_glass_powder_using_Na2CO3
5. Hurley, J., Glass-Research and Development, A UK market survey for foam glass, The Waste and Resources Action Programme Publication, Banbury-Oxon, Great Britain, (2003).
6. Dragoescu M. F., Paunescu, L., Axinte S. M., Innovative way to produce glass foam in microwave field, Nonconventional Technology Review, Vol. 22, No. 2, pp. 36-40, July (2018).
7. Karandashova, N. S., Goltsman, B. M., Yatsenko, E. A., Analysis of influence of foaming mixture components on structure and properties of foam glass, IOP Conference Series: Materials Science and Engineering, Vol. 262, (2017). https://iopscience.iop.org>article>262
8. Yatsenko, E. A., Goltsman, B. M., Smoliy, V. A., Kosarev, A. S., Investigation of a porous structure formation mechanism of a foamed slag glass based on the glycerol foaming mixture, Research Journal of Pharmaceutical, Biological and Chemical Sciences, Vol. 7, No. 5, pp. 1073-1081, September-October (2016). http://www.researchgate/publication/308561794_Investigation_of_a_porous_structure_formation_mechanism_of_a_foamed_slag_glass_based_on_the_glycerol_foaming_mixture
9. Environmental Product Declaration, Glapor Werk Mitterteich GmbH. https://www.Glapor_cellular_glass_gravel
10. Glapor Schaumglasprodukte. Cellular Glass Gravel. https://www.glapor.de/en/produkte/cellular_glass_gravel
11. Glamaco Foam Glass Gravel. http://www.glamaco.com/products/foam_glass_gravel
12. Lakov, L., Toncheva, K., Staneva, A., Simeonova, T., Ilcheva, Z., Composition, synthesis and properties of insulation foam glass obtained from packing glass waste, Journal of Chemical Technology and Metallurgy, Vol. 48, No. 2, pp. 125-129, (2013).
13. Sooksaen, P., Sudyod, N., Thongtha, N., Simsomboonphol, R., Fabrication of lightweight foam glasses for thermal insulation applications, Proceedings of Materialstoday, Vol. 17, Part 4, pp. 1823-1830, (2019). https://doi.org/10.1016/j.matpr.2019.06.219
14. Paunescu, L., Dragoescu, M. F., Axinte, S. M., Sebe, A. C., Glass foam from borosilicate glass waste produced in microwave field, Nonconventional Technologies Review, Vol. 23, No. 1, pp. 8-12, March (2019).
15. Ciriminna, R., Della Pina, C., Rossi, M., Pagliaro, M., Understanding the glycerol market, European Journal of Lipid Science and Technology, Wiley Online Library, June (2014). https://doi.org/10.1002/ejlt.201400229
16. Glycerol, Chemical Book, (2017). http://www.chemicalbook.com/chemical/productproperty_en_cb5339206.htm
17. Paunescu, L., Dragoescu, M. F., Axinte, S. M., Sebe, A. C., Lightweight aggregate from recycled masonry rubble achieved in microwave field, Nonconventional Technologies Review, Vol. 23, No. 2, pp. 47-51, June (2019).
18. Dragoescu, M. F., Paunescu, L., Axinte, S. M., Sebe, A. C., Nonconventional heating technique to produce glass-ceramic foam from glass waste and old clay brick waste, Nonconventional Technologies Review, Vol. 23, No. 2, pp. 58-62, June (2019).
19. Paunescu, L., Axinte, S. M., Grigoras, B. T., Dragoescu, M. F., Fiti, A., Testing the use of microwave energy to produce foam glass, European Journal of Engineering and Technology, Vol. 5, No. 4, pp. 8-17, (2017).
20. Axinte, S. M., Paunescu, L., Dragoescu, M. F., Sebe, A. C., Manufacture of glass foam by predominantly direct microwave heating of recycled glass waste, Transactions on Networks and Communications, Vol. 7, No. 4, October (2019). http://dx.doi.org/10.14738/tnc.74.7214
21. Paunescu, L., Grigoras, B. T., Dragoescu, M. F., Axinte, S. M., Fiti, A., Foam glass produced by microwave heating technique, Bulletin of Romanian Chemical Engineering Society, Vol. 4, No. 1, pp. 98-108, (2017).
22. Dragoescu, M. F., Axinte, S. M., Paunescu, L., Fiti, A., Foam glass with low apparent density and thermal conductivity produced by microwave heating, European Journal of Engineering and Technology, Vol. 6, No. 2, pp. 1-9, (2018).
23. Paunescu, L., Dragoescu, M. F., Paunescu, B. V., Foam glass gravel made from glass waste by microwave irradiation, Constructii, Vol. 20, No. 1-2, pp. 35-41, (2019).
24. Manual of weighing applications, Part 1, Density, (1999). http://www.deu.ie/sites/default/files/mechanicalengineering/pdf/manuals/DensityDeterminationmanualpdf
25. Anovitz, L. M., Cole, D. R., Characterization and analysis of porosity and pore structures, Review in Mineralogy & Geochemistry, Vol. 80, pp. 61-164, (2015).
26. Bianchi Janetti, M., Plaz, T., Ochs, F., Klesnil, O., Feist, W., Thermal conductivity of foam glass gravels: a comparison between experimental data and numerical results, Energy Procedia, Vol. 78, pp. 3258-3263, (2015).
27. Knox, M., Copley, G., Use of microwave radiation for the processing of glass, Glass Technology, Vol. 38, No. 3, pp. 91-96, (1997).
28. Kolberg, U., Roemer, M., Reacting of glass, Ceramic Transaction, Vol. 111, pp. 517-523, (2001).
29. Kharissova, O., Kharissov, B. I., Ruiz Valdés, J. J., Review: The use of microwave irradiation in the processing of glasses and their composites, Industrial & Engineering Chemistry Research, Vol. 49, No. 4, pp. 1457-1466, (2010).
Published
2020-09-30
How to Cite
Dragoescu, M., Paunescu, L., & Axinte, S. (2020). NONCONVENTIONAL TECHNIQUE OF SINTERING/ FOAMING THE GLASS WASTE USING A LIQUID CARBONIC FOAMING AGENT. Nonconventional Technologies Review, 24(3). Retrieved from http://revtn.ro/index.php/revtn/article/view/291

Most read articles by the same author(s)

1 2 3 4 > >>